Learn More
Synaptic vesicles have been proposed to form through two mechanisms: one directly from the plasma membrane involving clathrin-dependent endocytosis and the adaptor protein AP2, and the other from an endosomal intermediate mediated by the adaptor AP3. However, the relative role of these two mechanisms in synaptic vesicle recycling has remained unclear. We(More)
BACKGROUND Tea is one of the most popular non-alcoholic beverages worldwide. However, the tea plant, Camellia sinensis, is difficult to culture in vitro, to transform, and has a large genome, rendering little genomic information available. Recent advances in large-scale RNA sequencing (RNA-seq) provide a fast, cost-effective, and reliable approach to(More)
Adaptation to a visual pattern can alter the sensitivities of neuronal populations encoding the pattern, which usually results in a visual aftereffect. However, the functional role of visual adaptation is still equivocal and its relation to visual aftereffect is largely unknown, especially for high-level visual adaptation. In this study, we took advantage(More)
Several mechanisms can underlie short-term synaptic depression, including vesicle depletion, receptor desensitization, and changes in presynaptic release probability. To determine which mechanisms affect depression under physiological conditions, we studied the synapse formed by auditory nerve fibers onto bushy cells in the anteroventral cochlear nucleus(More)
Many synapses show short-term depression, but it is not well understood what functional purpose depression serves and whether its effects are beneficial or detrimental to information processing. We study this issue at the synapse made by auditory-nerve (AN) fibers onto bushy cells (BCs) of the cochlear nucleus, called the "endbulb of Held." AN fibers carry(More)
Phosphorylation of respiratory chain components has emerged as a mode of regulation of mitochondrial energy metabolism, but its mechanisms are still largely unexplored. A recently discovered intramitochondrial signalling pathway links CO(2) generated by the Krebs cycle with the respiratory chain, through the action of a mitochondrial soluble adenylyl(More)
Transforming growth factor beta (TGF-beta) signaling facilitates metastasis in advanced malignancy. While a number of protein-encoding genes are known to be involved in this process, information on the role of microRNAs (miRNAs) in TGF-beta-induced cell migration and invasion is still limited. By hybridizing a 515-miRNA oligonucleotide-based microarray(More)
Centromeres are chromosomal structures required for equal DNA segregation to daughter cells, comprising specialized nucleosomes containing centromere protein A (CENP-A) histone, which provide the basis for centromeric chromatin assembly. Discovery of centromere protein components is progressing, but knowledge related to their establishment and maintenance(More)
Establishing in vivo microdialysis methods for the quantitative determination of dopamine concentrations in the extracellular space of the brain is an important yet challenging objective. The source of the challenge is the difficulty in directly measuring the microdialysis recovery of dopamine during an in vivo experiment. The recovery value is needed for(More)
Glucose and other secretagogues are thought to activate a variety of protein kinases. This study was designed to unravel the sites of action of protein kinase A (PKA) and protein kinase C (PKC) in modulating insulin secretion. By using high time resolution measurements of membrane capacitance and flash photolysis of caged Ca(2+), we characterize three(More)