Learn More
The heavy incidence and severe or lethal damages of toxoplasmosis clearly indicate the need for the development of a more effective vaccine. In the present study, we constructed a multiantigenic DNA vaccine, eukaryotic plasmid pcDNA3.1-SAG1-ROP2, expressing surface protein SAG1 and rhoptry protein ROP2 of Toxoplasma gondii, and examined the expression(More)
Toxoplasma gondii is an obligate intracellular parasite that can pose a serious threat to human health by causing toxoplasmosis. There are no drugs that target the chronic cyst stage of this infection; therefore, development of an effective vaccine would be an important advance. Aspartic proteases play essential roles in the T. gondii lifecycle. The(More)
Previous immunological studies from our laboratory have demonstrated the potential role of Toxoplasma gondii antigens SAG1 and GRA2 as vaccine candidates. To further evaluate the vaccine's effects, a series of recombinant DNA vaccines pVAX1-SAG1, pVAX1-GRA2 and pVAX1-SAG1-GRA2, termed pSAG1, pGRA2 and pSAG1-GRA2, respectively, were constructed. A plasmid(More)
Toxoplasma gondii is an obligate intracellular protozoan which infects most species of warm-blooded animals and causes toxoplasmosis. Previous immunological and immunization studies have demonstrated the potential role of T. gondii antigens SAG1 and GRA2 as a vaccine candidate. In the present study, we have cloned, expressed, and purified a recombinant(More)
Toxoplasma gondii is an intracellular parasite that causes severe neurologic and ocular disease in immune-compromised and congenitally infected individuals. There is no vaccine protective against human toxoplasmosis. Herein, immunization of L(d) mice with HF10 (HPGSVNEFDF) with palmitic acid moieties or a monophosphoryl lipid A derivative elicited potent(More)
Infections by the intracellular protozoan parasite Toxoplasma gondii are widely prevalent in humans and other animals which can cause severe or lethal toxoplasmosis. So the development of a more effective vaccine is needed urgently. A multiantigenic vaccine against toxoplasmosis was constructed in the present study, which contains two T. gondii antigens,(More)
Trichoderma asperellum parasitizes a large variety of phytopathogenic fungi. The mycoparasitic activity of T. asperellum depends on the secretion of complex mixtures of hydrolytic enzymes able to degrade the host cell wall and proteases which are a group of enzymes capable of degrading proteins from host. In this study, a full-length cDNA clone of aspartic(More)
Toxoplasmosis, caused by an obligate intracellular protozoan parasite Toxoplasma gondii, has been a serious clinical and veterinary problem. Effective DNA vaccines against T. gondii can prevent and control the spread of toxoplasmosis, which is important for both human health and the farming industry. The T. gondii 14-3-3 protein has been proved to be(More)
Intracellular parasites, such as T. gondii, present a plurality of antigens because of the complexity of its life cycle. Compound DNA vaccines bring a new approach and hope for the treatment of toxoplasmosis. In this study, a DNA vaccine encoding two major surface antigens SAG1, SAG3 from T. gondii, with A2/B subunit of cholera toxin as a genetic adjuvant(More)
The search for an effective vaccine against toxoplasmosis remains a challenging and elusive goal. Combination of epitopes from different stages of Toxoplasma gondii life cycle is an optimal strategy to overcome the antigen complexity of the parasite. Based on published epitope derived from several promising candidate vaccine antigens, we construct a DNA(More)