Learn More
Based on energetic analysis, a novel approach for copper electrodeposition via cathodic reduction in microbial fuel cells (MFCs) was proposed for the removal of copper and recovery of copper solids as metal copper and/or Cu(2)O in a cathode with simultaneous electricity generation with organic matter. This was examined by using dual-chamber MFCs (chamber(More)
A membrane-free baffled microbial fuel cell (MFC) was developed to treat synthetic Cu(II) sulfate containing wastewater in cathode chamber and synthetic glucose-containing wastewater fed to anode chamber. Maximum power density of 314 mW/m(3) with columbic efficiency of 5.3% was obtained using initial Cu(2+) concentration of 6400 mg/L. Higher current density(More)
Based on environmental and energetic analysis, a novel combined approach using bioelectrochemical systems (BES) followed by electrolysis reactors (ER) was tested for heavy metals removal from fly ash leachate, which contained high detectable levels of Zn, Pb and Cu according to X-ray diffraction analysis. Acetic acid was used as the fly ash leaching agent(More)
The metalloprotein, CadR, was redesigned to optimize cadmium and mercury specificity of CadR-based E. coli biosensors. By truncating 10 and 21 amino acids from the C-terminal extension of CadR, CadR-TC10 and CadR-TC21 were obtained, respectively. The genes cadR, cadR-TC10 and cadR-TC21 were used as sensing elements to construct green fluorescent protein(More)
A pilot-scale, membrane-free, bioelectrochemical system (BES) reactor (16L in volume) installed by five cathodes with different distance to anode was tested for the removal of copper. CuSO4 solution was used as catholyte and anaerobic microorganisms grew as anodic biocatalyst. In the reactor, Cu(II) was reduced and recovered as solid-state copper deposits(More)
A novel approach was tested for metallic silver recovery and power generation by using cathodic reduction in bioelectrochemical systems (BESs). In dual-chamber BESs (130 mL volume) with acetate as electron donor on anode, both Ag(+) ions and Ag(I) thiosulfate complex in catholyte were reduced on cathode. The reduction rate of Ag(+) was more rapid than the(More)
The cathodic reduction of complex-state copper(II) was investigated in a dual chamber microbial fuel cell (MFC). The inner resistance of MFC system could be reduced in the presence of ionizing NH(4)(+), however, mass transfer was hindered at higher ammonia concentration. Thermodynamic and electrochemical analyses indicated that the processes of complex(More)
This study confirmed the feasibility of natural limonite working as the iron catalyst for the PNP wastewater treatment in the BES-Fenton system. After the start-up period of the BES-Fenton systems, air and limonite powder were injected into the cathode chamber as the original materials for manufacturing Fenton reagents of H₂O₂ and Fe(II) respectively. The(More)
Sewage sludge and bagasse were used as raw materials to produce cheap and efficient adsorbent with great adsorption capacity of Pb(2+). By pyrolysis at 800 °C for 0.5 h, the largest surface area (806.57 m(2)/g) of the adsorbent was obtained, enriched with organic functional groups. The optimal conditions for production of the adsorbent and adsorption of(More)
Great efforts have been made in China to retrofit and upgrade the existing municipal wastewater treatment plants (WWTPs) for enhanced removal of organic substrates and in particular nutrients. However, the removal of trace recalcitrant or hazardous organic chemicals, e.g. steroid estrogens, one group of typical endocrine disrupting chemicals, has long been(More)