Learn More
The stability and ion binding properties of the homo-tetrameric pore domain of a prokaryotic, voltage-gated sodium channel are studied by extensive all-atom molecular dynamics simulations, with the channel protein being embedded in a fully hydrated lipid bilayer. It is found that Na(+) ion presents in a mostly hydrated state inside the wide pore of the(More)
Despite sharing overall sequence and structural similarities, water channel aquaporin 0 (AQP0) transports water more slowly than other aquaporins. Using molecular dynamics simulations of AQP0 and AQP1, we find that there is a sudden decrease in the distribution profile of water density along the pore of AQP0 in the region of residue Tyr23, which(More)
Desalination that produces clean freshwater from seawater holds the promise of solving the global water shortage for drinking, agriculture and industry. However, conventional desalination technologies such as reverse osmosis and thermal distillation involve large amounts of energy consumption, and the semipermeable membranes widely used in reverse osmosis(More)
In sharp contrast to the prevailing view that electric fields promote water freezing, here we show by molecular dynamics simulations that monolayer ice confined between two parallel plates can melt into liquid water under a perpendicularly applied electric field. The melting temperature of the monolayer ice decreases with the increasing strength of the(More)
Phase behavior and the associated phase transition of water within inhomogeneous nanoconfinement are investigated using molecular dynamics simulations. The nanoconfinement is constructed by a flat bottom plate and a convex top plate. At 300 K, the confined water can be viewed as a coexistence of monolayer, bilayer, and trilayer liquid domains to accommodate(More)
The signaling molecules in neurons, called neurotransmitters, play an essential role in the transportation of neural signals, during which the neurotransmitters interact with not only specific receptors, but also cytomembranes, such as synaptic vesicle membranes and postsynaptic membranes. Through extensive molecular dynamics simulations, the atomic-scale(More)
BACKGROUND Acute cholecystitis is a common condition in gallbladder motility disorder. Interstitial Cajal-like cells (ICLCs) in the gallbladder are known as one of the players in the complex motility mechanisms affecting gallbladder motility. AIM This study explored morphological symptoms and molecular mechanisms underlying gallbladder ICLC changes(More)
BACKGROUND/AIMS Acute cholecystitis is common in gallbladder motility disorder. Interstitial cells of Cajal (ICCs) in the gallbladder are involved in the regulation of gallbladder motility. The aim of this study was to explore the change of gallbladder ICCs in acute cholecystitis. METHODS Thirty adult guinea pigs were randomly divided into 3 groups: a(More)
  • 1