Learn More
Current resting-state network analysis often looks for coherent spontaneous BOLD signal fluctuations at frequencies below 0.1 Hz in a multiple-minutes scan. However hemodynamic signal variation can occur at a faster rate, causing changes in functional connectivity at a smaller time scale. In this study we proposed to use MREG technique to increase the(More)
MR-encephalography is a technique that allows real-time observation of functional changes in the brain with a time-resolution of 100 ms. The high sampling rate is enabled by the use of undersampled image acquisition with regularized reconstruction. The article describes a novel imaging method for fast three-dimensional-MR-encephalography whole brain(More)
MR-encephalography allows the observation of functional signal in the brain at a frequency of 10 Hz, permitting filtering of physiological "noise" and the detection of single event activations. High temporal resolution is achieved by the use of undersampled non-Cartesian trajectories, parallel imaging and regularized image reconstruction. MR-encephalography(More)
Understanding the intrinsic circuit-level functional organization of the brain has benefited tremendously from the advent of resting-state fMRI (rsfMRI). In humans, resting-state functional network has been consistently mapped and its alterations have been shown to correlate with symptomatology of various neurological or psychiatric disorders. To date,(More)
In this article we aim at improving the performance of whole brain functional imaging at very high temporal resolution (100 ms or less). This is achieved by utilizing a nonlinear regularized parallel image reconstruction scheme, where the penalty term of the cost function is set to the L(1)-norm measured in some transform domain. This type of image(More)
Balanced steady-state free precession is an ultrafast sequence with high signal-to-noise efficiency, but it also generates a strong fat signal which can mask important features. One method of fat suppression is to modify the balanced steady-state free precession spectrum using multiple repetition times to create a wide stopband over the fat frequency.(More)
Connectome genetics seeks to uncover how genetic factors shape brain functional connectivity; however, the causal impact of a single gene's activity on whole-brain networks remains unknown. We tested whether the sole targeted deletion of the mu opioid receptor gene (Oprm1) alters the brain connectome in living mice. Hypothesis-free analysis of combined(More)
Resting-state networks have become an important tool for the study of brain function. An ultra-fast imaging technique that allows to measure brain function, called Magnetic Resonance Encephalography (MREG), achieves an order of magnitude higher temporal resolution than standard echo-planar imaging (EPI). This new sequence helps to correct physiological(More)
Connectomics of brain disorders seeks to reveal how altered brain function emerges from the architecture of cerebral networks; however the causal impact of targeted cellular damage on the whole brain functional and structural connectivity remains unknown. In the central nervous system, demyelination is typically the consequence of an insult targeted at the(More)
  • 1