Hstau Y. Liao

Learn More
Eukaryotic translation initiation begins with assembly of a 43S preinitiation complex. First, methionylated initiator methionine transfer RNA (Met-tRNAi(Met)), eukaryotic initiation factor (eIF) 2, and guanosine triphosphate form a ternary complex (TC). The TC, eIF3, eIF1, and eIF1A cooperatively bind to the 40S subunit, yielding the 43S preinitiation(More)
Phosphorylation has been implicated in the regulation of microtubule (MT) stability and function by controlling the interactions between MTs and MT-associated proteins. We found previously that protein phosphatase inhibitors selectively break down stable MTs, suggesting that protein phosphatases may be involved in regulating MT stability. To identify the(More)
Eukaryotic translation termination results from the complex functional interplay between two eukaryotic release factors, eRF1 and eRF3, and the ribosome, in which GTP hydrolysis by eRF3 couples codon recognition with peptidyl-tRNA hydrolysis by eRF1. Here, using cryo-electron microscopy (cryo-EM) and flexible fitting, we determined the structure of(More)
In this paper, we review current practices for establishing the resolution in single-particle reconstructions. The classical Raleigh criterion for the resolution is not applicable in this case, and the resolution is commonly defined by a consistency test, whereby the data set is randomly split in half and the two resulting reconstructions are then compared.(More)
Ribosomes, the protein factories of living cells, translate genetic information carried by messenger RNAs into proteins, and are thus involved in virtually all aspects of cellular development and maintenance. The few available structures of the eukaryotic ribosome reveal that it is more complex than its prokaryotic counterpart, owing mainly to the presence(More)
A Brownian machine, a tiny device buffeted by the random motions of molecules in the environment, is capable of exploiting these thermal motions for many of the conformational changes in its work cycle. Such machines are now thought to be ubiquitous, with the ribosome, a molecular machine responsible for protein synthesis, increasingly regarded as(More)
Neutrinoless double beta decay is a process that violates lepton number conservation. It is predicted to occur in extensions of the standard model of particle physics. This Letter reports the results from phase I of the Germanium Detector Array (GERDA) experiment at the Gran Sasso Laboratory (Italy) searching for neutrinoless double beta decay of the(More)
Our aim is to produce a tessellation of space into small voxels and, based on only a few tomographic projections of an object, assign to each voxel a label from a small predetermined set that indicates one of the components of interest constituting the object. Traditional methods are not reliable due to, among other reasons, the low number of projections.(More)