Learn More
Proximal spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by deficiency of the ubiquitous Survival of Motor Neuron (SMN) protein. SMN has been shown to be transported in granules along the axon and moved through cytoskeletal elements. However, the role and nature of SMN granules are still not well characterized. Here, using(More)
We isolated a novel bHLH-Zip gene designated Spz1 from a mouse testis cDNA library. Spz1 is expressed specifically in the testis and epididymis. Immunofluorescence staining detected Spz1 protein in the nuclei of LFG6 Leydig cells. The ability of Spz1 protein to bind to the bHLH consensus-binding site, the E-box, was confirmed by EMSA, and a 9-bp asymmetric(More)
Members of the RING finger family are implicated in a variety of functions such as signal transduction, transcriptional regulation and other developmental processes. Using degenerate oligonucleotide primers corresponding to the RING domain, we isolated a novel RING finger gene from the mouse testis cDNA library, which was about 1.8 kb and was termed Trif(More)
Proximal spinal muscular atrophy (SMA) is a motor neuron degeneration disorder for which there is currently no effective treatment. Here, we report three compounds (sodium vanadate, trichostatin A and aclarubicin) that effectively enhance SMN2 expression by inducing Stat5 activation in SMA-like mouse embryonic fibroblasts and human SMN2-transfected NSC34(More)
In spinocerebellar ataxia type 17 (SCA17), the expansion of a translated CAG repeat in the TATA box binding protein (TBP) gene results in a long polyglutamine (polyQ) tract in the TBP protein, leading to intracellular accumulation of aggregated TBP and cell death. The molecular chaperones act in preventing protein aggregation to ameliorate downstream(More)
PPP2R2B, a protein widely expressed in neurons throughout the brain, regulates the protein phosphatase 2A (PP2A) activity for the microtubule-associated protein tau and other substrates. Altered PP2A activity has been implicated in spinocerebellar ataxia 12, Alzheimer's disease (AD), and other tauopathies. Through a case-control study and a reporter assay,(More)
BACKGROUND Spinocerebellar ataxia type 8 (SCA8) involves the expression of an expanded CTG/CAG combined repeats (CR) from opposite strands producing CUG expansion transcripts (ataxin 8 opposite strand, ATXN8OS) and a polyglutamine expansion protein (ataxin 8, ATXN8). The pathogenesis of SCA8 is complex and the spectrum of clinical presentations is broad. (More)
Spinocerebellar ataxia 17 (SCA17) is caused by expansion of the polyglutamine (polyQ) tract in human TATA-box binding protein (TBP) that is ubiquitously expressed in both central nervous system and peripheral tissues. The spectrum of SCA17 clinical presentation is broad. The precise pathogenic mechanism in SCA17 remains unclear. Previously proteomics study(More)
Schizophrenia has a complex and non-Mendelian mode of inheritance. Recently, trinucleotide repeat (TNR)-containing genes have been considered as the candidate genes predisposing to schizophrenia. The purpose of this study was to determine whether a genetic association could be observed between schizophrenia and the TNR polymorphisms within the KLHL1AS/SCA8,(More)
BACKGROUND Proximal spinal muscular atrophy (SMA), a neurodegenerative disorder that causes infant mortality, has no effective treatment. Sodium vanadate has shown potential for the treatment of SMA; however, vanadate-induced toxicity in vivo remains an obstacle for its clinical application. We evaluated the therapeutic potential of sodium vanadate combined(More)