Learn More
Using the monoclonal antibody S103L, which reacts specifically with an epitope in the chondroitin sulfate-rich domain of the chick cartilage chondroitin sulfate proteoglycan (CSPG) core protein, we have identified the predominant CSPG expressed by notochord. This large notochord CSPG is first detected immunohistochemically as early as stage 16, long before(More)
We previously reported the cloning and sequencing of a 1.5-kilobase cDNA which encoded a portion of the chondroitin sulfate domain from the chick cartilage proteoglycan core protein and the localization of a species-specific monoclonal antibody epitope. Using polymerase chain reaction amplification and primer extension, cDNA clones which code for the entire(More)
The effect of the adenosine triphosphate (ATP)-sensitive potassium (KATP) channel blocker, glibenclamide, on adenosine-induced postsynaptic hyperpolarization was studied by means of intracellular recording techniques in TTX-treated CA1 neurones in the rat hippocampal slice. Glibenclamide applied in the CSF perfusion fluid at 30 microM reversibly depressed(More)
Nanog is a transcription factor that is essential for the maintenance of pluripotency of the embryonic stem cells. Nanog has been shown to be expressed in various kinds of human tumors, suggesting a role in tumorigenesis. In this study, we found that Nanog expression was upregulated by inhibition of protein kinase C (PKC) activity in six human cancer cell(More)
A large chondroitin sulfate proteoglycan (CSPG) identified in embryonic chick brain, and synthesized exclusively by neurons in a developmentally expressed pattern that coincides with migration and establishment of neuronal nuclei, reacts with a monoclonal antibody (S103L) developed against the cartilage-specific CSPG, aggrecan. The relationship of the brain(More)
We have established the presence of at least two large chondroitin sulfate proteoglycans in the developing chick brain, one that reacts exclusively with HNK-1, a carbohydrate epitope found on several neural specific molecules, and one that reacts with S103L, a defined peptide epitope in the CS-2 domain of the cartilage-specific chondroitin sulfate(More)
Biosynthesis of the activated sulfate donor, adenosine 3'-phosphate 5'-phosphosulfate, involves the sequential action of two enzyme activities: ATP sulfurylase, which catalyzes the formation of adenosine 5'-phosphosulfate (APS) from ATP and free sulfate, and APS kinase, which subsequently phosphorylates APS to produce adenosine 3'-phosphate(More)
To investigate the action of adenosine on interneurons as well as on excitatory synaptic transmission onto interneurons in the hippocampus, intracellular recordings were made from electrophysiologically identified interneurons in the CA1 region of the hippocampal slice in vitro. The effects of adenosine and the preferential adenosine A1 receptor agonist,(More)
Extensive studies on the mammalian sulfate-activating enzymes and PAPS translocase have enhanced our understanding of the overall pathway of sulfate activation and utilization. Isolation of the PAPS-synthesizing activities from rat chondrosarcoma and preparation of stable non-hydrolyzable analogs of APS and PAPS have facilitated the kinetic characterization(More)
Overexpression of DeltaNp63 has been observed in a number of human cancers, suggesting a role for DeltaNp63 in carcinogenesis. In the present study, we show that inhibition of glycogen synthase kinase-3beta (GSK-3beta) by lithium chloride (LiCl) elicited a stimulatory effect on DeltaNp63 promoter activity in HEK 293T cells. Exposure to LiCl induced(More)