#### Filter Results:

#### Publication Year

2008

2017

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

- Ran Duan, Hsin-Hao Su
- SODA
- 2012

Given a weighted bipartite graph, the maximum weight matching (MWM) problem is to find a set of vertex-disjoint edges with maximum weight. We present a new scaling algorithm that runs in O(m √ n log N) time, when the weights are integers within the range of [0, N ]. The result improves the previous bounds of O(N m √ n) by Gabow and O(m √ n log (nN)) by… (More)

- Ran Duan, Seth Pettie, Hsin-Hao Su
- ArXiv
- 2011

The maximum cardinality and maximum weight matching problems can be solved in time˜O(m √ n), a bound that has resisted improvement despite decades of research. (Here m and n are the number of edges and vertices.) In this article we demonstrate that this " m √ n barrier " is extremely fragile, in the following sense. For any > 0, we give an algorithm that… (More)

- Kai-Min Chung, Seth Pettie, Hsin-Hao Su
- Distributed Computing
- 2014

The Lovasz Local Lemma (LLL), introduced by Erdos and Lovasz in 1975, is a powerful tool of the probabilistic method that allows one to prove that a set of n "bad" events do not happen with non-zero probability, provided that the events have limited dependence. However, the LLL itself does not suggest how to find a point avoiding all bad events. Since the… (More)

- Cameron Musco, Hsin-Hao Su, Nancy A. Lynch
- ArXiv
- 2016

Many ant species employ distributed population density estimation in applications ranging from quorum sensing [Pra05], to task allocation [Gor99], to appraisal of enemy colony strength [Ada90]. It has been shown that ants estimate density by tracking encounter rates – the higher the population density, the more often the ants bump into each other [Pra05,… (More)

- David G. Harris, Johannes Schneider, Hsin-Hao Su
- STOC
- 2016

The (∆+1)-coloring problem is a fundamental symmetry breaking problem in distributed computing. We give a new randomized coloring algorithm for (∆+1)-coloring running in O(√log ∆)+ 2^O(√log log n) rounds with probability 1-1/n^Ω(1) in a graph with n nodes and maximum degree ∆. This implies that the… (More)

Graph coloring is a central problem in distributed computing. Both vertex-and edge-coloring problems have been extensively studied in this context. In this paper we show that a (2∆ − 1)-edge-coloring can be computed in time smaller than log n for any > 0, specifically, in e O(√ log log n) rounds. This establishes a separation between the (2∆ −… (More)

- Seth Pettie, Hsin-Hao Su
- Inf. Comput.
- 2015

Vertex coloring is a central concept in graph theory and an important symmetry-breaking primitive in distributed computing. Whereas degree-∆ graphs may require palettes of ∆ + 1 colors in the worst case, it is well known that the chromatic number of many natural graph classes can be much smaller. In this paper we give new distributed algorithms to find… (More)

- Mohsen Ghaffari, Hsin-Hao Su
- SODA
- 2017

We study a family of closely-related distributed graph problems, which we call degree splitting, where roughly speaking the objective is to partition (or orient) the edges such that each node's degree is split almost uniformly. Our findings lead to answers for a number of problems, a sampling of which includes: • We present a poly log n round deterministic… (More)

- Danupon Nanongkai, Hsin-Hao Su
- DISC
- 2014

We study the problem of computing the minimum cut in a weighted distributed message-passing networks (the CONGEST model). Let λ be the minimum cut, n be the number of nodes (processors) in the network, and D be the network diameter. Our algorithm can compute λ exactly in O((√ n log * n + D)λ 4 log 2 n) time. To the best of our knowledge, this is the first… (More)

- Li-Pu Yeh, Biing-Feng Wang, Hsin-Hao Su
- Algorithmica
- 2010

In this paper, we study the problems of enumerating cuts of a graph by non-decreasing weights. There are four problems, depending on whether the graph is directed or undirected, and on whether we consider all cuts of the graph or only s-t cuts for a given pair of vertices s, t. Efficient algorithms for these problems with˜O(n 2 m) delay between two… (More)