Learn More
CONTEXT Agents that enhance N-methyl-D-aspartate (NMDA) function through the glycine modulatory site (D-serine, glycine, or D-cycloserine) or through glycine transporter 1 (sarcosine) improve the symptoms of patients with stable chronic schizophrenia. OBJECTIVE To determine whether NMDA-glycine site agonists or glycine transporter-1 inhibitors have better(More)
BACKGROUND Agonists at the N-methyl-D-aspartate (NMDA)-glycine site (D-serine, glycine, D-alanine and D-cycloserine) and glycine transporter-1 (GlyT-1) inhibitor (N-methylglycine, or called sarcosine) both improve the symptoms of stable chronic schizophrenia patients receiving concurrent antipsychotics. Previous studies, however, found no advantage of(More)
BACKGROUND Small molecules that enhance the N-methyl-D-aspartate (NMDA) neurotransmission have been shown to be beneficial as adjuvant therapy for schizophrenia. Among these compounds, sarcosine (a glycine transporter-I inhibitor), when added to an existing regimen of antipsychotic drugs, has shown its efficacy for both chronically stable and acutely ill(More)
OBJECTIVE The Val158Met polymorphism of the catechol-O-methyltransferase gene has been demonstrated to be associated with prefrontal executive function explaining 4% of variance in perseverative errors on the Wisconsin Card Sorting Test (WCST). Studies suggest that dopamine D(1) and D(3) and serotonin 5-HT(2A) and 5-HT(6) receptors may also be involved in(More)
BACKGROUND Adjunctive fluvoxamine inhibits clozapine metabolism and decreases plasma norclozapine (a toxic metabolite of clozapine) to clozapine ratios. This study aimed to demonstrate the effects of fluvoxamine on clozapine-related weight gain, hyperglycemia, and lipid abnormalities. METHOD Sixty-eight treatment-resistant inpatients with a DSM-IV(More)
BACKGROUND Hypofunction of N-methyl-D-aspartate glutamate receptor had been implicated in the pathophysiology of schizophrenia. Treatment with D-serine or glycine, endogenous full agonists of the glycine site of N-methyl-D-aspartate receptor, or D-cycloserine, a partial agonist, improve the symptoms of schizophrenia. N-methylglycine (sarcosine) is an(More)
Glutamatergic neurotransmission, particularly through the N-methyl-d-aspartate (NMDA) receptor, has drawn attention for its role in the pathophysiology of schizophrenia. This paper reviews the neurodevelopmental origin and genetic susceptibility of schizophrenia relevant to NMDA neurotransmission, and discusses the relationship between NMDA hypofunction and(More)
Recent evidence indicates that enhancing N-methyl-D-aspartate (NMDA) neurotransmission with the treatment of NMDA/glycine site agonists, such as D-serine, or a glycine transporter-1 (GlyT-1) antagonist, N-methylglycine (sarcosine), can improve symptoms of schizophrenia. To compare these two novel approaches, 60 patients with chronic schizophrenia were(More)
BACKGROUND Antidepressants, aiming at monoaminergic neurotransmission, exhibit delayed onset of action, limited efficacy, and poor compliance. Glutamatergic neurotransmission is involved in depression. However, it is unclear whether enhancement of the N-methyl-D-aspartate (NMDA) subtype glutamate receptor can be a treatment for depression. METHODS We(More)
IMPORTANCE In addition to dopaminergic hyperactivity, hypofunction of the N-methyl-d-aspartate receptor (NMDAR) has an important role in the pathophysiology of schizophrenia. Enhancing NMDAR-mediated neurotransmission is considered a novel treatment approach. To date, several trials on adjuvant NMDA-enhancing agents have revealed beneficial, but limited,(More)