Learn More
Transactional memory systems are expected to enable parallel programming at lower programming complexity, while delivering improved performance over traditional lock-based systems. Nonetheless, there are certain situations where transactional memory systems could actually perform worse. Transactional memory systems can outperform locks only when the(More)
As technology scaling poses a threat to DRAM scaling due to physical limitations such as limited charge, alternative memory technologies including several emerging non-volatile memories are being explored as possible DRAM replacements. One main roadblock for wider adoption of these new memories is the limited write endurance, which leads to wear-out related(More)
Phase change memory (PCM) is an emerging memory technology for future computing systems. Compared to other non-volatile memory alternatives, PCM is more matured to production, and has a faster read latency and potentially higher storage density. The main roadblock precluding PCM from being used, in particular, in the main memory hierarchy, is its limited(More)
Memory bandwidth has become a major performance bottleneck as more and more cores are integrated onto a single die, demanding more and more data from the system memory. Several prior studies have demonstrated that this memory bandwidth problem can be addressed by employing a 3D-stacked memory architecture, which provides a wide, high frequency memory-bus(More)
DRAMs require periodic refresh for preserving data stored in them. The refresh interval for DRAMs depends on the vendor and the de- sign technology they use. For each refresh in a DRAM row, the stored information in each cell is read out and then written back to itself as each DRAM bit read is self-destructive. The refresh pro- cess is inevitable for(More)
There are several emerging memory technologies looming on the horizon to compensate the physical scaling challenges of DRAM. Phase change memory (PCM) is one such candidate proposed for being part of the main memory in computing systems. One salient feature of PCM is its multi-level-cell (MLC) property, which can be used to multiply the memory capacity at(More)
Š3D ICS PROMISE TO OVERCOME barriers in interconnect scaling by leveraging fast, dense interdie vias, thereby providing an opportunity for continued higher performance using CMOS. 1 In addition, 3D ICs also enable the integration of heterogeneous fabrication processes on the same chip to make the form factor more compact, leading to a true SoC. However, 3D(More)
Die stacking is a promising new technology that enables integration of devices in the third dimension. Recent research thrusts in 3D-integrated microprocessor design have demonstrated significant improvements in both power consumption and performance. However, this technology is currently being held back due to the lack of test technology. Because processor(More)
This paper presents the first multiobjective microarchitectural floorplanning algorithm for high-performance processors implemented in two-dimensional (2-D) and three-dimensional (3-D) ICs. The floorplanner takes a microarchitectural netlist and determines the dimension as well as the placement of the functional modules into single- or multiple-device(More)