Learn More
The primary metric for gauging progress in the various semiconductor integrated circuit technologies is the spacing, or pitch, between the most closely spaced wires within a dynamic random access memory (DRAM) circuit. Modern DRAM circuits have 140 nm pitch wires and a memory cell size of 0.0408 mum(2). Improving integrated circuit technology will require(More)
The advent of supramolecular chemistry [1] has provided chemists with the wherewithal to construct molecule-level machines [2, 3] in an efficient manner using the protocol of template-direction. Synthetically accessible, linear motor molecules come in the guise of bistable [2]rotaxanes in which the ring component can be induced [5] to move relative to the(More)
Microreactor technology has shown potential for optimizing synthetic efficiency, particularly in preparing sensitive compounds. We achieved the synthesis of an [(18)F]fluoride-radiolabeled molecular imaging probe, 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG), in an integrated microfluidic device. Five sequential processes-[18F]fluoride concentration, water(More)
Oncogenic kinase activity and the resulting aberrant growth and survival signaling are a common driving force of cancer. Accordingly, many successful molecularly targeted anticancer therapeutics are directed at inhibiting kinase activity. To assess kinase activity in minute patient samples, we have developed an immunocapture-based in vitro kinase assay on(More)
The clinical practice of oncology is being transformed by molecular diagnostics that will enable predictive and personalized medicine. Current technologies for quantitation of the cancer proteome are either qualitative (e.g., immunohistochemistry) or require large sample sizes (e.g., flow cytometry). Here, we report a microfluidic platform-microfluidic(More)
We have successfully designed and fabricated an integrated microfluidic platform, the hESC-microChip, which is capable of reproducible and quantitative culture and analysis of individual hESC colonies in a semi-automated fashion. In this device, a serpentine microchannel allows pre-screening of dissociated hESC clusters, and six individually addressable(More)
Nanomaterials have been increasingly employed as drug(s)-incorporated vectors for drug delivery due to their potential of maximizing therapeutic efficacy while minimizing systemic side effects. However, there have been two main challenges for these vectors: (i) the existing synthetic approaches are cumbersome and incapable of achieving precise control of(More)
In this paper, we introduce a new approach for the in situ electrochemical fabrication of an individually addressable array of conducting polymer nanowires (CPNWs) positioned within an integrated microfluidic device and also demonstrate that such an integrated device can be used as a chemical sensor immediately after its construction.
Circulating tumor cells (CTCs) are cancer cells that break away from either a primary tumor or a metastatic site and circulate in the peripheral blood as the cellular origin of metastasis. With their role as a "tumor liquid biopsy", CTCs provide convenient access to all disease sites, including that of the primary tumor and the site of fatal metastases. It(More)
Previous studies have demonstrated focal but limited molecular similarities between circulating tumor cells (CTCs) and biopsies using isolated genetic assays. We hypothesized that molecular similarity between CTCs and tissue exists at the single cell level when characterized by whole genome sequencing (WGS). By combining the NanoVelcro CTC Chip with laser(More)