Howard Frazier

Learn More
BACKGROUND Changes in energy substrate metabolism are first responders to hemodynamic stress in the heart. We have previously shown that hexose-6-phosphate levels regulate mammalian target of rapamycin (mTOR) activation in response to insulin. We now tested the hypothesis that inotropic stimulation and increased afterload also regulate mTOR activation via(More)
Mechanical unloading of the rat heart increases both protein synthesis and protein degradation. The transcriptional mechanism underlying increased protein synthesis during atrophic remodeling is not known. The aim of this study was to identify transcriptional regulators and the gene expression profile regulating protein synthesis in the unloaded rat heart(More)
  • 1