Learn More
We present a rule-based framework for defining and implementing finite trace monitoring logics, including future and past time temporal logic, extended regular expressions, real-time logics, interval logics, forms of quantified temporal logics, and so on. Our logic, EAGLE, is implemented as a Java library and involves novel techniques for rule definition,(More)
Eagle was introduced as a general purpose rule-based temporal logic for specifying run-time monitors. A novel and relatively efficient interpretative trace-checking scheme via stepwise transformation of an Eagle monitoring formula was defined and implemented. However, application in real-world examples has shown efficiency weaknesses, especially those(More)
In this paper we further develop the methodology of temporal logic as an executable imperative language, presented by Moszkowski [Mos86] and Gabbay [Gab87, Gab89] and present a concrete framework, called MetateM for executing (modal and) temporal logics. Our approach is illustrated by the development of an execution mechanism for a propositional temporal(More)
Assume-guarantee reasoning enables a " divide-and-conquer " approach to the verification of large systems that checks system components separately while using assumptions about each component's environment. Developing appropriate assumptions used to be a difficult and manual process. Over the past five years, we have developed a framework for performing(More)
In this paper we advance the radical notion that a computational model based on the <i>reals</i> provides a more abstract description of concurrent and reactive systems, than the conventional <i>integers</i> based behavioral model of execution <i>sequences.</i> The real model is studied in the setting of temporal logic,(More)
Model checking is an automated technique that can be used to determine whether a system satisfies certain required properties. The typical approach to verifying properties of software components is to check them for all possible environments. In reality, however, a component is only required to satisfy properties in specific environments. Unless these(More)
Compositional proof systems not only enable the stepwise development of concurrent processes but also provide a basis to alleviate the state explosion problem associated with model checking. An assume-guarantee style of specification and reasoning has long been advocated to achieve compo-sitionality. However, this style of reasoning is often non-trivial,(More)
We present a rule-based framework, called EAGLE, that has been shown to be capable of defining and implementing a range of finite trace monitoring logics, including future and past time temporal logic, extended regular expressions, real-time and metric temporal logics, interval logics, forms of quantified temporal logics, and so on. A monitor for an EAGLE(More)
In this paper a methodology for the use of temporal logic as an executable imperative language is introduced. The approach, which provides a concrete framework, called METAa'EM, for executing temporal formulae, is motivated and illustrated through examples. In addition, this introduction provides references to further, more detailed, work relating to the(More)