Learn More
It is difficult to mix solutions in microchannels. Under typical operating conditions, flows in these channels are laminar-the spontaneous fluctuations of velocity that tend to homogenize fluids in turbulent flows are absent, and molecular diffusion across the channels is slow. We present a passive method for mixing streams of steady pressure-driven flows(More)
Using slender-body hydrodynamics in the inertialess limit, we examine the motion of Purcell's swimmer, a planar, fore–aft-symmetric three-link flagellum or propulsive mechanism that translates by alternately moving its front and rear segments. Purcell (1976) concluded via symmetry arguments that the net displacement of such a swimmer must follow a straight(More)
The no-slip boundary condition at a solid-liquid interface is at the center of our understanding of fluid mechanics. However, this condition is an assumption that cannot be derived from first principles and could, in theory, be violated. In this chapter, we present a review of recent experimental, numerical and theoretical investigations on the subject. The(More)
Microorganisms such as bacteria and many eukaryotic cells propel themselves with hair-like structures known as flagella, which can exhibit a variety of structures and movement patterns. For example, bacterial flagella are helically shaped and driven at their bases by a reversible rotary engine, which rotates the attached flagellum to give a motion similar(More)
Near a solid boundary, Escherichia coli swims in clockwise circular motion. We provide a hydrodynamic model for this behavior. We show that circular trajectories are natural consequences of force-free and torque-free swimming and the hydrodynamic interactions with the boundary, which also leads to a hydrodynamic trapping of the cells close to the surface.(More)
This article describes the process of formation of droplets and bubbles in microfluidic T-junction geometries. At low capillary numbers break-up is not dominated by shear stresses: experimental results support the assertion that the dominant contribution to the dynamics of break-up arises from the pressure drop across the emerging droplet or bubble. This(More)
Bacteria frequently live in densely populated surface-bound communities, termed biofilms [1-4]. Biofilm-dwelling cells rely on secretion of extracellular substances to construct their communities and to capture nutrients from the environment [5]. Some secreted factors behave as cooperative public goods: they can be exploited by nonproducing cells [6-11].(More)
Bacterial biofilms have an enormous impact on medicine, industry and ecology. These microbial communities are generally considered to adhere to surfaces or interfaces. Nevertheless, suspended filamentous biofilms, or streamers, are frequently observed in natural ecosystems where they play crucial roles by enhancing transport of nutrients and retention of(More)
In most environments, such as natural aquatic systems, bacteria are found predominantly in self-organized sessile communities known as biofilms. In the presence of a significant flow, mature multispecies biofilms often develop into long filamentous structures called streamers, which can greatly influence ecosystem processes by increasing transient storage(More)
Single-vein leaves have the simplest hydraulic design possible, yet even this linear water delivery system can be modulated to improve physiological performance. We determined the optimal distribution of transport capacity that minimizes pressure drop per given investment in xylem permeability along the needle for a given length without a change in total(More)