Houng-Chi Liou

Learn More
Cerebral microvascular endothelial cells form the anatomical basis of the blood-brain barrier (BBB), and the tight junctions of the BBB are critical for maintaining brain homeostasis and low permeability. Ischemia/reperfusion is known to damage the tight junctions of BBB and lead to permeability changes. Here we investigated the protective role of(More)
Heme oxygenase-1 (HO-1) is up-regulated in response to oxidative stress and catalyzes the degradation of pro-oxidant heme to carbon monoxide (CO), iron, and bilirubin. Intense HO-1 immunostaining in the Parkinsonian brain is demonstrated, indicating that HO-1 may be involved in the pathogenesis of Parkinsonism. We here locally injected adenovirus containing(More)
Autophagy is a degradation pathway for the turnover of dysfunctional organelles or aggregated proteins in cells. Extracellular accumulation of beta-amyloid peptide has been reported to be a major cause of Alzheimer disease (AD) and large numbers of autophagic vacuoles accumulate in the brain of AD patient. However, how autophagic process is involved in(More)
Heme oxygenase-1 (HO-1) is up-regulated in response to oxidative stress and catalyzes the degradation of pro-oxidant heme to carbon monoxide (CO), iron and bilirubin. Bilirubin is a potent antioxidant and neuroprotectant. Neurotrophic factors of BDNF and GDNF also play important roles in survival and morphological differentiation of dopaminergic neurons. We(More)
1. Glutamate receptors play important roles in synaptic plasticity and neural development. Here we report that, at the developing neuromuscular synapses in Xenopus cultures, the activation of presynaptic glutamate receptors at motor nerve terminals potentiates spontaneous acetylcholine (ACh) release. 2. Co-cultures of spinal neurons and myotomal muscle(More)
Extracellular application of glutamate (100 microM) increased the spontaneous secretion of acetylcholine, as well as the amplitude and decay time of miniature endplate potentials at developing neuromuscular synapses in Xenopus tadpoles. Kainate, quisqualate and N-methyl-D-aspartate (100 microM each) increased miniature endplate potential frequency by 26-,(More)
The mediators and cellular effectors of inflammation are important constituents of the local environment of tumors. In some occasions, oncogenic changes induce an inflammatory microenvironment that promotes the progression of tumors. In gliomas, the presence of microglia may represent tumor-related inflammation and microglia activation, and subsequent(More)
The use of an ultrasound contrast agent (UCA) with focused ultrasound sonication has the potential to disrupt the blood-brain barrier (BBB) noninvasively and reversibly at target locations. This study investigated the effects of UCA dose and ultrasound pressure on BBB disruption. Sonications were applied at 1 MHz with a burst length of 10 ms, a 1% duty(More)
1. Acetylcholine (ACh) is important as the transmitter responsible for neuromuscular transmission. Here we report the non-quantal release of ACh from embryonic myocytes. 2. Co-cultures of spinal neurons and myotomal muscle cells were prepared from 1-day-old Xenopus embryos. Single channel currents were recorded in the non-innervated myocytes. When the patch(More)
Exposure to hypoxia induced microglia activation and animal studies have shown that neuronal cell death is correlated with microglial activation following cerebral ischemia. Thus, it is likely that toxic inflammatory mediators produced by activated microglia under hypoxic conditions may exacerbate neuronal injury following cerebral ischemia. The(More)