Houari Korideck

Learn More
UNLABELLED This communication reports the first experimental evidence of gold nanoparticle (AuNP) radiosensitization during continuous low-dose-rate (LDR) gamma irradiation with low-energy brachytherapy sources. HeLa cell cultures incubated with and without AuNP were irradiated with an I-125 seed plaque designed to produce a relatively homogeneous dose(More)
In this study, we quantify the relative damage enhancement due to the presence of gold nanoparticles (GNP) in vitro in a clinical 6 MV beam for various delivery parameters and depths. It is expected that depths and delivery modes that produce a larger proportions of low-energy photons will have a larger effect on the cell samples containing GNP. HeLa cells(More)
Background Nanoparticles made from high-Z materials are promising agents to increase radiosensitivity of cancer cells during the application of radiation therapy. Hainfeld et al. (2004, 2008) demonstrated therapeutic enhancement with gold nanoparticles (GNP) in a 250 kVp X-ray beam. The dose-enhancing effect was attributed to the photoelectric effect and(More)
PURPOSE To develop and test the suitability and performance of a comprehensive quality assurance (QA) phantom for the Small Animal Radiation Research Platform (SARRP). METHODS AND MATERIALS A QA phantom was developed for carrying out daily, monthly and annual QA tasks including: imaging, dosimetry and treatment planning system (TPS) performance evaluation(More)
We report the design and fabrication of third generation ultrasmall PEGylated gold nanoparticles based platform (AuRad(™)) optimized for applications in radiation therapy. The AuRad(™) nanoplatform has the following key features: (I) surface coating of hetero-bifunctional-PEG with amine, carboxyl, methoxy functional groups, which make this a versatile(More)
UNLABELLED Radiation dose enhancement of high-Z nanoparticles is an active area of research in cancer therapeutics. When kV and MV energy photon beams interact with high-Z nanoparticles in a tumor, the release of secondary electrons can injure tumor cells, leading to a higher treatment efficacy than radiation alone. We present a study that characterizes the(More)
Radiation therapy (RT) is the treatment of cancer and other diseases with ionizing radiation. The ultimate goal of RT is to destroy all the disease cells while sparing healthy tissue. Towards this goal, RT has advanced significantly over the past few decades in part due to new technologies including: multileaf collimator-assisted modulation of radiation(More)
Radiation therapy (RT), a critical modality in the treatment of lung cancer, induces direct tumor cell death and augments tumor-specific immunity. However, despite initial tumor control, most patients suffer from locoregional relapse and/or metastatic disease following RT. The use of immunotherapy in non-small-cell lung cancer (NSCLC) could potentially(More)
The Small Animal Radiation Research Platform (SARRP) is a novel isocentric irradiation system that enables state-of-the-art image-guided radiotherapy research to be performed with animal models. This paper reports the results obtained from investigations assessing the radiation dose delivered by the SARRP to different anatomical target volumes in mice.(More)
Most cancer therapeutics (chemo, radiation, antibody-based, anti-angiogenic) are at best partially and/or temporarily effective. In general, the causes for failure can be summarized as: (i) poor diffusion and/or nonuniform distribution of drug/prodrug molecules in solid tumors; (ii) high drug concentration and retention in normal tissues (leading to side(More)