Learn More
MicroRNAs (miRNAs) interfere with translation of specific target mRNAs and are thought to thereby regulate many cellular processes. Recent studies have suggested that miRNAs might play a role in osteoblast differentiation and bone formation. Here, we identify a new miRNA (miR-2861) in primary mouse osteoblasts that promotes osteoblast differentiation by(More)
microRNAs (miRNAs) play pivotal roles in osteoblast differentiation. However, the mechanisms of miRNAs regulating osteoblast mineralization still need further investigation. Here, we performed miRNA profiling and identified that miR-93 was the most significantly downregulated miRNA during osteoblast mineralization. Overexpression of miR-93 in cultured(More)
Our recent study showed that miR-2861 promotes osteoblast differentiation by targeting histone deacetylase 5, resulting in increased runt-related transcription factor 2 (Runx2) protein production. Here we identified another new microRNA (miRNA) (miR-3960) that played a regulatory role in osteoblast differentiation through a regulatory feedback loop with(More)
UNLABELLED Our study indicates that recombinant adiponectin induced RANKL and inhibited OPG expression in human osteoblasts through the AdipoR1/p38 MAPK pathway, and these responses contributed to the adiponectin-induced osteoclasts formation in the co-culture of osteoblast and peripheral blood monocytes systems. These findings showed that adiponectin(More)
The aim of this study was to investigate the effects of apelin on proliferation and apoptosis of mouse osteoblastic MC3T3-E1 cells. APJ was expressed in MC3T3-E1 cells. Apelin did not affect Runx2 expression, alkaline phosphatase (ALP) activity, osteocalcin and type I collagen secretion, suggesting that it has no effect on osteoblastic differentiation of(More)
MicroRNAs (miRNAs) play crucial roles in bone metabolism. In the present study, we found that miR-148a is dramatically upregulated during osteoclastic differentiation of circulating CD14+ peripheral blood mononuclear cells (PBMCs) induced by macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL).(More)
Bone marrow mesenchymal stem cells (BMSCs) exhibit an age-dependent reduction in osteogenesis that is accompanied by an increased propensity toward adipocyte differentiation. This switch increases adipocyte numbers and decreases the number of osteoblasts, contributing to age-related bone loss. Here, we found that the level of microRNA-188 (miR-188) is(More)
Adipocytes can highly and specifically express adiponectin, and the adiponectin receptor (AdipoR) has been detected in bone-forming cells. The present study was undertaken to investigate the action of adiponectin on osteoblast proliferation and differentiation. AdipoR1 protein was detected in human osteoblasts. Adiponectin promoted osteoblast proliferation(More)
MicroRNAs (miRNAs) play important roles in osteoclastogenesis and bone resorption. However, no study has investigated the role of miRNA in postmenopausal osteoporosis. Here, we report that miR-503 was markedly reduced in circulating progenitors of osteoclasts-CD14(+) peripheral blood mononuclear cells (PBMCs) from postmenopausal osteoporosis patients(More)
AIMS Omentin-1 (also known as intelectin-1) is a recently identified visceral adipose tissue-derived cytokine that is inversely related to obesity. Our previous study showed that omentin-1 inhibits osteoblastic differentiation of calcifying vascular smooth muscle cells (CVSMCs) in vitro. This study was undertaken to investigate the effects of omentin-1 on(More)