Hosam Khalil

Learn More
The basic vector quantization (VQ) technique employed in video coding belongs to the category of predictive vector quantization (PVQ), as it involves quantization of the (motion compensated) frame prediction error. It is well known that the design of PVQ suffers from fundamental difficulties, due to the prediction loop, which have an impact on the(More)
—A new approach is proposed for predictive vector quantizer (PVQ) design, which is inherently probabilistic, and is based on ideas from information theory and analogies to statistical physics. The approach effectively resolves three longstanding fundamental shortcomings of standard PVQ design. The first complication is due to the PVQ prediction loop, which(More)
Three-dimensional (3-D) video compression using wavelets decomposition along the temporal axis dictates that a number of video frames must be buffered to allow for the temporal decomposition. Buffering of frames allows for the temporal correlation to be made use of, and the larger the buffer the more effective the decomposition. One problem inherent in such(More)
—A multistage vector quantizer (MSVQ) based coding system is source-channel optimized for packet networks. Resilience to packet loss is enhanced by a proposed interleaving approach that ensures that a single lost packet only eliminates a subset of the vector stages. The design is optimized while taking into account compression efficiency, packet loss rate,(More)