Horst-Günter Rubahn

Learn More
The antimicrobial properties of silver nanoparticles (AgNPs) have made these particles one of the most frequently utilized nanomaterials in consumer products; therefore, a comprehensive understanding of their toxicity is necessary. In particular, information about the cellular uptake and size dependence of AgNPs is insufficient. In this study, we evaluated(More)
A new route to bottom-up organic nanotechnology is presented. Molecular building blocks with specific optoelectronic properties are designed and grown via directed self-assembly arrays of morphologically controlled light-emitting organic nanofibers on template surfaces. The fibers can be easily transferred from the growth substrate to device platforms(More)
In this work, a new method for the fabrication of organic solar cells containing functional light-trapping nanostructures on flexible substrates is presented. Polyimide is spin-coated on silicon support substrates, enabling standard micro- and nanotechnology fabrication techniques, such as photolithography and electron-beam lithography, besides the steps(More)
We demonstrate the use of organic nanofibers, composed of self-assembled organic molecules, as a dielectric medium for dielectric-loaded surface plasmon polariton waveguides at near-infrared wavelengths. We successfully exploit a metallic grating coupler to excite the waveguiding mode and characterize dispersion properties of such waveguides using(More)
The electrical properties of self-assembled organic crystalline nanofibers are studied by integrating these on field-effect transistor platforms using both top and bottom contact configurations. In the staggered geometries, where the nanofibers are sandwiched between the gate and the source-drain electrodes, a better electrical conduction is observed when(More)
Organic nanostructures made from organic molecules such as para-hexaphenylene (p-6P) could form nanoscale components in future electronic and optoelectronic devices. However, the integration of such fragile nanostructures with the necessary interface circuitry such as metal electrodes for electrical connection continues to be a significant hindrance toward(More)
We describe a method to fabricate, transfer and validate via image processing nanofibre-based, unique security marks ('nanotags') for anti-counterfeiting purposes. Epitaxial surface growth of oligophenylenes on a heated muscovite mica crystal results in a thin film of mutually aligned nanofibres with dimensions of tens of nanometres in height, hundreds of(More)
Discontinuous organic thin film growth on the surface of single crystals results in crystalline nanowires with extraordinary morphological and optoelectronic properties. By way of being generated at the interface of organic and inorganic materials, these nanowires combine the advantages of flexible organic films with the defectless character of inorganic(More)
Keywords: UV photolithography 35 mm Photography Microfluidics Lab on chip PDMS replica molding Rapid prototyping Microfabrication Alternative masks a b s t r a c t We present a simple method for producing molds for casting PDMS microfluidic chips using photo-lithography with 35 mm photographic negatives as masks. We demonstrate the capabilities and(More)
Understanding the impact of lateral mode confinement in plasmonic waveguides is of fundamental interest regarding potential applications in plasmonic devices. The knowledge of the frequency-wave vector dispersion relation provides the full information on electromagnetic field propagation in a waveguide. This Letter reports on the measurement of the real(More)