Learn More
Prostaglandins (PGs) are local mediators of several functions in the CNS. Both primary afferent neurons and intrinsic cells in the spinal cord produce PGs, with a marked upregulation during peripheral inflammation. Therefore, the significance of spinal PGs in the neuronal processing of mechanosensory information was herein investigated. In anesthetized(More)
The periaqueductal gray matter (PAG) and the nucleus raphe magnus and adjacent structures of the rostral ventromedial medulla (RVM), with their projections to the spinal dorsal horn, constitute the "efferent channel" of a pain-control system that "descends" from the brain onto the spinal cord. Considerable evidence has recently emerged regarding(More)
The efferent pathways of the optic tectum have been investigated in the percomorph Eugerres and the berycomorph Holocentrus. A portion of the dorsal-dorsolateral region of the optic tectum was unilaterally resected by suction. The animals were perfused 6-30 days thereafter, and the brains were processed according to a modification (Method 7 in Ebbesson,(More)
1. The present study addresses the involvement of voltage-dependent calcium channels of the N and L type in the spinal processing of innocuous and noxious input from the knee joint, both under normal conditions and under inflammatory conditions in which spinal cord neurons become hyperexcitable. In 30 anesthetized rats, extracellular recordings were(More)
Horseradish-peroxidase (HRP) was injected (9-18 microng in 0.03-0.06 micronl) into cortical areas 17, 18 or 19 of 11 adult cats. After survival times of 17 hours to 7 days, the thalamus was examined for retrogradely HRP labelled nerve cells in serial transverse sections. From these sections, the percentage of labelled cells occurring in each subdivision of(More)
1. The analgesic effect of nonsteroidal anti-inflammatory drugs (NSAIDs) is partly due to the fact that they act upon the periaqueductal gray matter (PAG) and the rostral ventromedial medulla of the brain stem and thus activate the descending pain-control system, which inhibits nociceptive transmission at the spinal dorsal horn. 2. The analgesic action of(More)
Non-opioid analgesics have been shown to elicit antinociception by an action upon central nervous system structures, in addition to their well known action upon peripheral tissues. Microinjection of metamizol (dipyrone), a widely used nonopioid analgesic, into the periaqueductal grey matter (PAG) of rats activates pain-modulating systems in the nucleus(More)