Learn More
In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients-manually annotated by up to four(More)
Automated classification of human anatomy is an important prerequisite for many computer-aided diagnosis systems. The spatial complexity and variability of anatomy throughout the human body makes classification difficult. " Deep learning " methods such as convolutional networks (ConvNets) outper-form other state-of-the-art methods in image classification(More)
Medical image analysis remains a challenging application area for artificial intelligence. When applying machine learning, obtaining ground-truth labels for supervised learning is more difficult than in many more common applications of machine learning. This is especially so for datasets with abnormalities, as tissue types and the shapes of the organs in(More)
Automatic organ segmentation is an important yet challenging problem for medical image analysis. The pancreas is an abdominal organ with very high anatomical variability. This inhibits previous segmentation methods from achieving high accuracies, especially compared to other organs such as the liver, heart or kidneys. In this paper, we present a(More)
Remarkable progress has been made in image recognition, primarily due to the availability of large-scale annotated datasets and deep convolutional neural networks (CNNs). CNNs enable learning data-driven, highly representative, hierarchical image features from sufficient training data. However, obtaining datasets as comprehensively annotated as ImageNet in(More)
Various patient data of a large population are available on the patient archive and communication system (PACS) of many hospitals or clinical institutions. However such data are not widely studied, due to the challenges encountered in analyzing a large clinical dataset. Nonetheless, efficient analysis of large data can lead us to gain useful, possibly(More)
Despite tremendous progress in computer vision, there has not been an attempt to apply machine learning on very large-scale medical image databases. We present an interleaved text/image deep learning system to extract and mine the semantic interactions of radiology images and reports from a national research hospital's Picture Archiving and Communication(More)
Histograms of oriented gradients (HOG) are widely employed image descriptors in modern computer-aided diagnosis systems. Built upon a set of local, robust statistics of low-level image gradients, HOG features are usually computed on raw intensity images. In this paper, we explore a learned image transformation scheme for producing higher-level inputs to(More)
Despite the recent advances in automatically describing image contents, their applications have been mostly limited to image caption datasets containing natural images (e.g., Flickr 30k, MSCOCO). In this paper, we present a deep learning model to efficiently detect a disease from an image and annotate its contexts (e.g., location, severity and the affected(More)