Learn More
Molluscs form their shells out of CaCO(3) and a matrix of biomacromolecules. Understanding the role of matrices may shed some light on the mechanism of biomineralization. Here, a 1401-bp full-length cDNA sequence encoding a novel matrix protein was cloned from the mantle of the bivalve oyster, Pinctada fucata. The deduced protein (Prisilkin-39), which has a(More)
N-deoxyribosyltransferases are essential enzymes in the nucleotide salvage pathway of lactobacilli. They catalyze the exchange between the purine or pyrimidine bases of 2'-deoxyribonucleosides and free pyrimidine or purine bases. In general, N-deoxyribosyltransferases are referred to as cytoplasmic enzymes, although there is no experimental evidence for(More)
Prednisolone represents an important compound in pharmaceutical preparations. To obtain more bioactive prednisolone derivatives, the microbial transformation of prednisolone was carried out. The steroid products were assigned by an interpretation of their spectral data using mass spectrometry and proton nuclear magnetic resonance (1H NMR) analyses. The(More)
Oridonin, an active ditepenoid component isolated from Rabdosia rubescens which is currently one of the most important Chinese traditional herbs, has been reported to exhibit anti-tumor effects in vitro. In this study, the anti-proliferation effect of oridonin against the human colorectal carcinoma cells HT29 was investigated both in vitro and in vivo. MTT(More)
Iron is one of the most important minor elements in the shell of bivalves. This study was designed to investigate the involvement of ferritin, the principal protein for iron storage, in shell formation. A novel ferritin cDNA from the pearl oyster (Pinctada fucata) was isolated and characterized. The ferritin cDNA encodes a 206 amino acid polypeptide, which(More)
Nucleoside analogues are used widely for the treatment of viral diseases and cancer, however the preparation of some important intermediates of these nucleoside analogues, including 2'-deoxyadenosine (dAR) and 5-methyluridine (5-MU), remains inconvenient. To optimize the synthesis of dAR and 5-MU, recombinant strains and auto-induction medium were employed(More)
The initial growth of the nacreous layer is crucial for comprehending the formation of nacreous aragonite. A flat pearl method in the presence of the inner-shell film was conducted to evaluate the role of matrix proteins in the initial stages of nacre biomineralization in vivo. We examined the crystals deposited on a substrate and the expression patterns of(More)
In mollusks, the inner shell film is located in the shell-mantle zone and it is important in shell formation. In this study, we found that the film was composed of two individual films under certain states and some columnar structures were observed between the two individual films. The inner shell film was separated with the process of(More)
To study the function of pearl oyster matrix proteins in nacreous layer biomineralization in vivo, we examined the deposition on pearl nuclei and the expression of matrix protein genes in the pearl sac during the early stage of pearl formation. We found that the process of pearl formation involves two consecutive stages: (i) irregular calcium carbonate(More)
The fine microstructure of nacre (mother of pearl) illustrates the beauty of nature. Proteins found in nacre were believed to be "natural hands" that control nacre formation. In the classical view of nacre formation, nucleation of the main minerals, calcium carbonate, is induced on and by the acidic proteins in nacre. However, the basic proteins were not(More)