Hongyun Wang

Learn More
We present a numerical algorithm that is well suited for the study of biomolecular transport processes. In the algorithm a continuous Markov process is discretized as a jump process and the jump rates are derived from local solutions of the continuous system. Consequently, the algorithm has two advantages over standard numerical methods: (1) it preserves(More)
Arabidopsis transcriptional factors LEAFY COTYLEDON1 (LEC1), LEAFY COTYLEDON2 (LEC2), FUSCA3 (FUS3), ABSCISIC ACID3 (ABI3), and ABSCISIC ACID5 (ABI5) are known to regulate multiple aspects of seed development. In an attempt to understand the developmental control of storage product accumulation, we observed the expression time course of the five(More)
Using molecular dynamics, we study the unbinding of ATP in F(1)-ATPase from its tight binding state to its weak binding state. The calculations are made feasible through use of interpolated atomic structures from Wang and Oster [Nature 1998, 396: 279-282]. These structures are applied to atoms distant from the catalytic site. The forces from these distant(More)
Semi-Markov processes have found increasing applications in modeling the kinetics of single enzyme molecules. Detailed balance is a widely accepted condition for Markov models of closed chemical systems and well known to be equivalent to the reversibility of a stationary Markov process. We show that for a semi-Markov process detailed balance is only a(More)
This numerical study provides an error analysis of an idealized nanopore sequencing method in which ionic current measurements are used to sequence intact single-stranded DNA in the pore, while an enzyme controls DNA motion. Examples of systematic channel errors when more than one nucleotide affects the current amplitude are detailed, which if present will(More)
SecA is an essential component in the Sec-dependent protein translocation pathway and, together with ATP, provides the driving force for the transport of secretory proteins across the cytoplasmic membrane of Escherichia coli. Previous studies established that SecA undergoes monomer-dimer equilibrium in solution. However, the oligomeric state of functional(More)
DNA polymerases catalyze template-dependent genome replication. The assembly of a high affinity ternary complex between these enzymes, the double strand-single strand junction of their DNA substrate, and the deoxynucleoside triphosphate (dNTP) complementary to the first template base in the polymerase active site is essential to this process. We present a(More)
Two theoretical formalisms are widely used in modeling mechanochemical systems such as protein motors: continuum Fokker-Planck models and discrete kinetic models. Both have advantages and disadvantages. Here we present a "finite volume" procedure to solve Fokker-Planck equations. The procedure relates the continuum equations to a discrete mechanochemical(More)
Molecular motors are small, and, as a result, motor operation is dominated by high-viscous friction and large thermal fluctuations from the surrounding fluid environment. The small size has hindered, in many ways, the studies of physical mechanisms of molecular motors. For a macroscopic motor, it is possible to observe/record experimentally the internal(More)