Learn More
Repeated exposure to cocaine can induce neuroadaptations in the brain. One mechanism by which persistent changes occur involves alterations in gene expression mediated by the dopamine receptors. Both the dopamine D1 and D3 receptors have been shown to mediate gene expression changes. Moreover, the D1 and D3 receptors are also coexpressed in the same(More)
Development of drug addiction involves complex molecular changes in the CNS. The mitogen-activated protein kinase (MAPK) signaling pathway plays a key role in mediating neuronal activation induced by dopamine, glutamate, and drugs of abuse. We previously showed that dopamine D(1) and D(3) receptors play different roles in regulating cocaine-induced MAPK(More)
Development of drug addiction involves persistent neurobiological changes. The dopamine D1 receptor is involved in mediating cocaine-induced neuroadaptation, yet the underlying intracellular mechanisms remain unclear. We examined a potential role of the immediate early gene Fos, which is robustly and rapidly induced by cocaine via D1 receptors, in mediating(More)
The development of drug addiction involves persistent cellular and molecular changes in the CNS. The brain dopamine and glutamate systems play key roles in mediating drug-induced neuroadaptation. Changes in dendritic morphology in medium spiny neurons (MSNs) in the nucleus accumbens (NAc) and caudate putamen (CPu) accompany drug-induced enduring behavioral(More)
  • 1