Learn More
Neonatal seizures can be refractory to conventional anticonvulsants, and this may in part be due to a developmental increase in expression of the neuronal Na(+)-K(+)-2 Cl(-) cotransporter, NKCC1, and consequent paradoxical excitatory actions of GABAA receptors in the perinatal period. The most common cause of neonatal seizures is hypoxic encephalopathy, and(More)
OBJECTIVE The most common neurological symptom of tuberous sclerosis complex (TSC) and focal cortical dysplasia (FCD) is early life refractory epilepsy. As previous studies have shown enhanced excitatory glutamatergic neurotransmission in TSC and FCD brains, we hypothesized that neurons associated with these lesions may also express altered γ-aminobutyric(More)
Early life seizures can result in chronic epilepsy, cognitive deficits and behavioral changes such as autism, and conversely epilepsy is common in autistic children. We hypothesized that during early brain development, seizures could alter regulators of synaptic development and underlie the interaction between epilepsy and autism. The mammalian Target of(More)
Neonatal seizures are commonly caused by hypoxic and/or ischemic injury during birth and can lead to long-term epilepsy and cognitive deficits. In a rodent hypoxic seizure (HS) model, we have previously demonstrated a critical role for seizure-induced enhancement of the AMPA subtype of glutamate receptor (GluA) in epileptogenesis and cognitive consequences,(More)
BACKGROUND Recent studies suggest that endoplasmic reticulum stress (ERS) is the key process in ischemic brain injury. The JNK pathway is also involved in the process of ischemic brain injury. METHOD We established a middle cerebral artery occlusion/reperfusion (MCAO/R) model in rats; detected the changes in c-Jun N-terminal kinase (JNK), GADD153 and(More)
Neonatal seizures can lead to later life epilepsy and neurobehavioral deficits, and there are no treatments to prevent these sequelae. We showed previously that hypoxia-induced seizures in a neonatal rat model induce rapid phosphorylation of serine-831 (S831) and Serine 845 (S845) sites of the AMPA receptor GluR1 subunit and later neuronal hyperexcitability(More)
Neonatal seizures can lead to epilepsy and long-term cognitive deficits into adulthood. Using a rodent model of the most common form of human neonatal seizures, hypoxia-induced seizures (HS), we aimed to determine whether these seizures modify long-term potentiation (LTP) and silent NMDAR-only synapses in hippocampal CA1. At 48-72 h after HS,(More)
Recently, carbon nanotubes together with other types of conductive materials have been used to enhance the viability and function of cardiomyocytes in vitro. Here we demonstrated a paradigm to construct ECTs for cardiac repair using conductive nanomaterials. Single walled carbon nanotubes (SWNTs) were incorporated into gelatin hydrogel scaffolds to(More)
BACKGROUND The human endogenous retroviral family W, Env(C7), member 1 gene (HERVWE1) is thought to participate in trophoblast cell fusion, and its expression is diminished in the placentas of singleton intrauterine growth-retarded pregnancies. However, there is limited information about the role of HERVWE1 in discordant fetal growth in twins. This study(More)
Interstitial Cajal-like cells are a distinct type of interstitial cell with a wide distribution in mammalian organs and tissues, and have been given the name “telocytes”. Recent studies have demonstrated the potential roles of telocytes in heart development, renewal, and repair. However, further research on the functions of telocytes is limited by the(More)