Learn More
Legumes are simultaneously one of the largest families of crop plants and a cornerstone in the biological nitrogen cycle. We combined molecular and phylogenetic analyses to evaluate genome conservation both within and between the two major clades of crop legumes. Genetic mapping of orthologous genes identifies broad conservation of genome macrostructure,(More)
This study presents the development and mapping of simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers in chickpea. The mapping population is based on an inter-specific cross between domesticated and non-domesticated genotypes of chickpea (Cicer arietinum ICC 4958 x C. reticulatum PI 489777). This same population has been the focus(More)
Phylogenetic relationships among the NBS-LRR (nucleotide binding site-leucine-rich repeat) resistance gene homologues (RGHs) from 30 genera and nine families were evaluated relative to phylogenies for these taxa. More than 800 NBS-LRR RGHs were analyzed, primarily from Fabaceae, Brassicaceae, Poaceae, and Solanaceae species, but also from representatives of(More)
Leguminous plants can enter into root nodule symbioses with nitrogen-fixing soil bacteria known as rhizobia. An intriguing but still poorly understood property of the symbiosis is its host specificity, which is controlled at multiple levels involving both rhizobial and host genes. It is widely believed that the host specificity is determined by specific(More)
In natural ecosystems, many plants are able to establish mutually beneficial symbioses with microorganisms. Of critical importance to sustainable agriculture are the symbioses formed between more than 80% of terrestrial plants and arbuscular mycorrhizal (AM) fungi and between legumes and nitrogen-fixing rhizobial bacteria. Interestingly, the two symbioses(More)
The nucleotide-binding site (NBS)-Leucine-rich repeat (LRR) gene family accounts for the largest number of known disease resistance genes, and is one of the largest gene families in plant genomes. We have identified 333 nonredundant NBS-LRRs in the current Medicago truncatula draft genome (Mt1.0), likely representing 400 to 500 NBS-LRRs in the full genome,(More)
Medicago truncatula IPD3 (MtIPD3) is an interacting protein of DMI3 (does not make infections 3), a Ca(2+)/calmodulin-dependent protein kinase (CCaMK) essential for both arbuscular mycorrhizal (AM) and rhizobial symbioses. However, the function of MtIPD3 in root symbioses has not been demonstrated in M. truncatula, because of a lack of knockout mutants for(More)
BACKGROUND Persistent fibroblast activation initiated by transforming growth factor β (TGF-β) is a fundamental event in the pathogenesis of systemic sclerosis, and its pharmacological inhibition represents a potential therapeutic strategy. The nuclear receptor, peroxisome proliferator-activated receptor γ (PPAR-γ), exerts potent fibrotic activity. The(More)
Legume rotation has allowed a consistent increase in crop yield and consequently in human population since the antiquity. Legumes will also be instrumental in our ability to maintain the sustainability of our agriculture while facing the challenges of increasing food and biofuel demand. Medicago truncatula and Lotus japonicus have emerged during the last(More)