Learn More
Triple negative breast cancer (TNBC) is an aggressive type of breast cancer with high heterogeneity. To date, there is no efficient therapy for TNBC patients and the prognosis is poor. It is urgent to find new biomarkers for the diagnosis of TNBC or efficient therapy targets. As an area of focus in the post-genome period, long non-coding RNAs (lncRNAs) have(More)
BACKGROUND Musashi1 (Msi1) is a conserved RNA-binding protein that regulates the Notch and Wnt pathways, and serves as a stem cell marker in the breast and other tissues. It is unknown how Msi1 relates to other breast cancer markers, whether it denotes tumor initiating cells (TICs), and how it affects gene expression and tumor cell survival in breast cancer(More)
In receptor-mediated endocytosis, cells exercise biochemical control over the mechanics of adhesion to engulf foreign particles, featuring a variable adhesion strength. Here we present a thermodynamic model with which we elucidate that the variable adhesion strength critically governs the cellular uptake, yielding an uptake phase diagram in the space of(More)
BACKGROUND Metastasis is a major cause of morbidity and mortality in breast cancer with tumor cell invasion playing a crucial role in the metastatic process. PDK1 is a key molecule that couples PI3K to cell proliferation and survival signals in response to growth factor receptor activation, and is oncogenic when expressed in mouse mammary epithelial cells.(More)
The peroxisome proliferator-activated receptorγ (PPARγ) is a key regulator of metabolism, proliferation, inflammation and differentiation, and upregulates tumor suppressor genes, such as PTEN, BRCA1 and PPARγ itself. Examination of mammary carcinogenesis in transgenic mice expressing the dominant-negative Pax8PPARγ fusion protein revealed that tumors were(More)
Biological membranes are involved in numerous intriguing biophysical and biological cellular phenomena of different length scales, ranging from nanoscale raft formation, vesiculation, to microscale shape transformations. With extended length and time scales as compared to atomistic simulations, solvent-free coarse-grained membrane models have been exploited(More)
Peroxisome proliferator-activated receptorδ (PPARδ) is a transcription factor that is associated with metabolic gene regulation and inflammation. It has been implicated in tumor promotion and in the regulation of 3-phosphoinositide-dependent kinase-1 (PDK1). PDK1 is a key regulator of the AGC protein kinase family, which includes the proto-oncogene AKT/PKB(More)
Recommended by Dipak Panigrahy PPARγ and PPARδ agonists represent unique classes of drugs that act through their ability to modulate gene transcription associated with intermediary metabolism, differentiation, tumor suppression, and in some instances proliferation and cell adhesion. PPARγ agonists are used by millions of people each year to treat type 2(More)
Mucin1 (MUC1) is a transmembrane glycoprotein that acts as an oncogene in human hepatic tumorigenesis. Hepatocellular carcinoma (HCC) cells often gain advantage by reducing the tumor-suppressive activity of transforming growth factor beta (TGF-β) together with stimulation of its oncogenic activity as in MUC1 expressing HCC cells; however, molecular(More)
Ricin toxin binding subunit B (RTB) is one of the subunits of the ricin protein. RTB has been used as adjuvant, but little is known about its mechanism. In this study, we found that RTB increased not only nitric oxide (NO) release, but also tumor necrosis factor (TNF)-α and interleukin (IL)-6 production in mouse macrophage cell line RAW264.7 cells. They(More)