Hongwen Kang

Learn More
We propose an approach to identify and segment objects from scenes that a person (or robot) encounters in Activities of Daily Living (ADL). Images collected in those cluttered scenes contain multiple objects. Each image provides only a partial, possibly very different view of each object. An object instance discovery program must be able to link pieces of(More)
The appearance of an outdoor scene is determined to a great extent by the prevailing illumination conditions. However, most practical computer vision applications treat illumination more as a nuisance rather than a source of signal. In this dissertation, we suggest that we should instead embrace illumination, even in the challenging, uncontrolled world of(More)
In this paper, we propose a data driven approach to first-person vision. We propose a novel image matching algorithm, named Re-Search, that is designed to cope with self-repetitive structures and confusing patterns in the indoor environment. This algorithm uses state-of-art image search techniques, and it matches a query image with a two-pass strategy. In(More)
We propose a data-driven approach to estimate the likelihood that an image segment corresponds to a scene object (its “objectness”) by comparing it to a large collection of example object regions. We demonstrate that when the application domain is known, for example, in our case activity of daily living (ADL), we can capture the regularity of(More)
Object discovery algorithms group together image regions that originate from the same object. This process is effective when the input collection of images contains a large number of densely sampled views of each object, thereby creating strong connections between nearby views. However, existing approaches are less effective when the input data only provide(More)
In this paper, we propose a semi-supervised learning approach for classifying program (bot) generated web search traffic from that of genuine human users. The work is motivated by the challenge that the enormous amount of search data pose to traditional approaches that rely on fully annotated training samples. We propose a semi-supervised framework that(More)
In this paper we propose an image indexing and matching algorithm that relies on selecting distinctive high dimensional features. In contrast with conventional techniques that treated all features equally, we claim that one can benefit significantly from focusing on distinctive features. We propose a bag-of-words algorithm that combines the feature(More)
We propose a new data-driven framework for novel object detection and segmentation, or “object pop-out”. Traditionally, this task is approached via background subtraction, which requires continuous observation from a stationary camera. Instead, we consider this an image matching problem. We detect novel objects in the scene using an unordered,(More)
  • 1