Learn More
CD40 is expressed on various immune cells, including macrophages and micro-glia. Aberrant expression of CD40 is associated with autoimmune inflammatory diseases such as multiple sclerosis and rheumatoid arthritis. Interaction of Toll-like receptor-4 (TLR4) with the Gram-negative bacteria endotoxin lipopolysac-charide (LPS) results in the induction of an(More)
Immunological activation of macrophages/microglia within the CNS leads to the production of cytokines and chemokines that ultimately impact on glial and neuronal function. Suppressor of cytokine signaling (SOCS) proteins are negative regulators of adaptive and innate immune responses. Our previous studies demonstrated that SOCS-3 attenuates(More)
Astrocytes play a number of important physiological roles in CNS homeostasis. Inflammation stimulates astrocytes to secrete cytokines and chemokines that guide macrophages/microglia and T cells to sites of injury/inflammation. Herein, we describe how these processes are controlled by the suppressor of cytokine signaling (SOCS) proteins, a family of proteins(More)
The JAK/STAT pathway is critical for development, regulation, and termination of immune responses, and dysregulation of the JAK/STAT pathway, that is, hyperactivation, has pathological implications in autoimmune and neuroinflammatory diseases. Suppressor of cytokine signaling 3 (SOCS3) regulates STAT3 activation in response to cytokines that play important(More)
Inflammation in the CNS contributes to neurologic disorders. Neuroinflammation involves the release of inflammatory molecules from glial cells, such as astrocytes and microglia, and can lead to neuronal damage if unabated. In multiple sclerosis, peripheral immune cells, including IFN-γ-producing Th1 cells, infiltrate the CNS and are important in shaping the(More)
In glioma, microglia and macrophages are the largest population of tumor-infiltrating cells, referred to as glioma associated macrophages (GAMs). Herein, we sought to determine the role of Suppressor of Cytokine Signaling 3 (SOCS3), a negative regulator of Signal Transducer and Activator of Transcription 3 (STAT3), in GAM functionality in glioma. We(More)
OBJECTIVE To promote understandings about the pathogenesis of ischemic stroke (IS) through mining key genes, functions and pathways with microarray technology. METHODS Differentially expressed genes (DEGs) in blood between patients with IS and healthy people were screened out through comparing microarray data obtained from Gene Expression Omnibus.(More)