Learn More
Propane/propene separation by cryogenic distillation is one of the most energy and cost intensive industrial processes. Adsorptive separation is a more energy-efficient alternative. Three isostructural zinc imidazolate zeolitic framework materials are found, for the first time, to be very promising in the separation of propene and propane based on their(More)
Because of the intrinsic importance of nucleic acid as bio-targets, the simple and sensitive detection of nucleic acid is very essential for biological studies and medical diagnostics. Herein, a simple, isothermal and highly sensitive fluorescence detection of target DNA was developed with the combination of exonuclease III (Exo III)-assisted cascade target(More)
A series of pyrido[2,3-d]pyrimidine derivatives were designed and synthesized based on known CC chemokine receptor 4 (CCR4) antagonists. The activities of all the newly synthesized compounds were evaluated using a chemotaxis inhibition assay. Compound 6b was proven to be a potent CCR4 antagonist that can block cell chemotaxis induced by macrophage-derived(More)
Developing novel approaches to reverse the drug resistance of tumor-repopulating cells (TRCs) or stem cell-like cancer cells is an urgent clinical need to improve outcomes of cancer patients. Here we show an innovative approach that reverses drug resistance of TRCs using tumor cell-derived microparticles (T-MPs) containing anti-tumor drugs. TRCs, by virtue(More)
A direct ab initio dynamics method was used to study the mechanism and kinetics of the reaction CF(3)CHFOCH(3) + OH. Two reaction channels, R1 and R2, were found, corresponding to H-abstraction from a CH(3) group and a CHF group, respectively. The potential energy surface (PES) information was obtained at the G3(MP2)//MP2/6-311G(d,p) level. The standard(More)
Owing to the intrinsic importance of nucleic acid as bio-targets, the achievement of its simple and sensitive detection with high confidence is very essential for biological studies and diagnostic purposes. Herein, a label-free, isothermal, and ultrasensitive electrochemical detection of target DNA was developed by using a tandem polymerization and(More)
The catalytic hairpin DNA assembly-programmed active Mg(2+)-dependent DNAzyme was proposed for dual-signal amplified detection toward protein and DNA. The protein detection was implemented with the further combination of an additional terminal protection strategy. The detection limit toward avidin and target DNA could be achieved as 2 pM and 0.5 pM,(More)
The programmable DNA polymerization across the two branches of the assembled Y-shaped junction was ingeniously manipulated for modular target recycling and cascade lambda exonuclease cleavage, which afforded the one-pot, isothermal and ultrasensitive detection of target DNA. A low detection limit of 28.2 fM of target DNA with an excellent selectivity could(More)
  • 1