Learn More
Semiconductor quantum dots (QDs) are tiny light-emitting particles on the nanometer scale, and are emerging as a new class of fluorescent labels for biology and medicine. In comparison with organic dyes and fluorescent proteins, they have unique optical and electronic properties, with size-tunable light emission, superior signal brightness, resistance to(More)
BACKGROUND & AIMS Identification of a ligand/receptor system that enables functionalized nanoparticles to efficiently target pancreatic cancer holds great promise for the development of novel approaches for the detection and treatment of pancreatic cancer. Urokinase plasminogen activator receptor (uPAR), a cellular receptor that is highly expressed in(More)
Because of their attractive chemical and physical properties, graphitic nanomaterials and their derivatives have gained tremendous interest for applications in electronics, materials, and biomedical areas. However, few detailed studies have been performed to evaluate the potential cytotoxicity of these nanomaterials on living systems at the molecular level.(More)
Epidermal growth factor receptor (EGFR) targeted nanoparticle are developed by conjugating a single-chain anti-EGFR antibody (ScFvEGFR) to surface functionalized quantum dots (QDs) or magnetic iron oxide (IO) nanoparticles. The results show that ScFvEGFR can be successfully conjugated to the nanoparticles, resulting in compact ScFvEGFR nanoparticles that(More)
We report the development of cell-penetrating quantum dots (QDs) based on the use of multivalent and endosome-disrupting (endosomolytic) surface coatings. Hyperbranched copolymer ligands such as polyethylene glycol (PEG) grafted polyethylenimine (PEI-g-PEG) are found to encapsulate and solubilize luminescent quantum dots through direct ligand-exchange(More)
Small molecule metabolites secreted by pathological processes can act as molecular biomarkers for clinical diagnosis. In vitro detection of the metabolites such as glucose and reactive oxygen species is of great significance for precise screening, monitoring and prognosis of metabolic disorders and relevant diseases such as cancer, and has been under(More)
Mitochondrial-dependent apoptosis plays an important role in the degeneration of dopaminergic neurons in Parkinson’s disease (PD). Methyl-4-phenyl-1,2,3,6-tetra- hydropyridine (MPTP), the most widely used neurotoxin to simulate PD, is converted to 1-methyl-4-phenylpyridinium (MPP+) in vivo. MPP+ induces excessive intracellular reactive oxygen species (ROS),(More)
A number of procedures are currently available to encapsulate and solubilize hydrophobic semiconductor Quantum Dots (QDs) for biological applications. Most of these procedures are based on the use of small-molecule coordinating ligands, amphiphilic polymers, or amphiphilic lipids. However, it is still not clear how these different surface coating molecules(More)
A highly efficient process using iron oxide magnetic nanoparticles (IO)-based immunomagnetic separation of tumor cells from fresh whole blood has been developed. The process involved polymer coated 30 nm IO that was modified with antibodies (Ab) against human epithelial growth factor receptor 2 (anti-HER2 or anti-HER2/neu) forming IO-Ab. HER2 is a cell(More)
Parkinson's disease (PD) is the second most common neurodegenerative disease. Although the etiology of PD is not completely understood, it is well-documented that oxidative stress and Ca(2+)-mediated cellular damage play important roles in the progression of PD. 2-[[(1,1-Dimethylethyl)oxidoimino]-methyl]-3,5,6-trimethylpyrazine (TBN), a novel nitrone(More)