Learn More
This paper extends the classical warping-based optical flow method to achieve accurate flow in the presence of spatially-varying motion blur. Our idea is to parameterize the appearance of each frame as a function of both the pixel motion and the motion-induced blur. We search for the flows that best match two consecutive frames, which amounts to finding the(More)
Despite its compactness, the human eye can easily focus on different distances by adjusting the shape of its lens with the help of ciliary muscles. In contrast, traditional man-made optical systems achieve focusing by physical displacement of the lenses used. But in recent years, advances in miniaturization technology have led to optical systems that no(More)
—A silicon micromachining method has been developed to fabricate on-chip high-performance suspended spiral inductors. The spiral structure of an inductor was formed with polysilicon and was suspended over a 30-m-deep cavity in the silicon substrate beneath. Copper (Cu) was electrolessly plated onto the polysilicon spiral to achieve low resistance. The Cu(More)
We report on liquid-based tunable-focus microlens arrays made of a flexible polydimethylsiloxane (PDMS) polymer. Each microlens in the array is formed through an immiscible liquid–liquid interfacial meniscus. Here deionized water and silicone oil were used. The liquids were constrained in the PDMS structures fabricated through liquid-phase(More)
We present single-wall carbon nanotube (SWCNT) incorporated liquid crystal elastomer (LCE) nanocomposites that demonstrate strong, reversible photoactuation. The matrix nematic LCE material possesses reversible thermal deformation, while SWCNTs perform photothermal energy conversion and local heat dissipation upon irradiation. The resultant SWCNT–LCE(More)
We present a microlens array consisting of multiple liquid-based tunable-focus microlenses omnidirectionally fabricated on a hemisphere, resulting in large field of view. Polymer bridge structure is formed between microlenses to reduce the stress and deformation in each lens structure. Each microlens in the array is formed via a water-oil interface at its(More)
Dye-sensitized solar cells with an energy storage function are demonstrated by modifying its counter electrode with a poly (vinylidene fluoride)/ZnO nanowire array composite. This simplex device could still function as an ordinary solar cell with a steady photocurrent output even after being fully charged. An energy storage density of 2.14 C g(-1) is(More)
To study the fundamental energy storage mechanism of photovoltaically self-charging cells (PSCs) without involving light-responsive semiconductor materials such as Si powder and ZnO nanowires, we fabricate a two-electrode PSC with the dual functions of photocurrent output and energy storage by introducing a PVDF film dielectric on the counterelectrode of a(More)
— This paper presents a fabrication process that integrates polysilicon surface micromachining and deep reactive ion etching (DRIE) bulk silicon micromachining. The process takes advantage of the design flexibility of polysilicon surface micromachining and the deep silicon structures possible with DRIE. As a demonstration, a torsional actuator driven by a(More)