Learn More
Pinocembrin (PB), the most abundant flavonoid in propolis, has been proven to have neuroprotective property against neurotoxicity in vivo and in vitro. Our recent study demonstrated the neuroprotective effect of PB against Aβ25–35-induced SH-SY5Y neurotoxicity. However, the mechanism as how PB can induce neuroprotection is not known. In the present study,(More)
Astaxanthin (ATX), the most abundant flavonoids in propolis, has been proven to exert neuroprotective property against glutamate-induced neurotoxicity and ischemia-reperfusion-induced apoptosis. Previous study have revealed that ATX can rescue PC12 cells from Aβ(25-35)-induced apoptotic death. However, the mechanisms by which ATX mediates its therapeutic(More)
Amyloid beta-peptide (Abeta) has been implicated in the pathogenesis of AD. It can cause cell death in AD by evoking a cascade of oxidative damage to neurons. So antioxidant compounds may throw a light on the treatment of AD. In the present study, we investigated the protective effect of acteoside (AS), an antioxidative phenylethanoid glycoside, on(More)
Microtubule-associated proteins (MAPs) play a critical role in maintaining normal cytoskeletal architecture and functions. In the present study, we aim to explore the effects of the emotional stressor, chronic restraint stress, on the expression levels and localization of tau and MAP2. We found that after chronic restraint stress, soluble(More)
Amyloid beta peptide (Aβ) can cause neurotoxicity in Alzheimer's disease (AD). It evokes a cascade of oxidative damage to neurons. Pinocembrin (PCB), the most abundant flavonoid in propolis, has been proven to have neuroprotective effects in vivo and in vitro. In the present study, we investigated the neuroprotective effects of PCB on Aβ25-35-induced(More)
Our recent study demonstrated that pinocembrin (PB), the most abundant flavonoid in propolis, has neuroprotective effect against 1-methyl-4-phenylpyridinium (MPP(+))-induced SH-SY5Y neurotoxicity. However, the mechanism as how PB can induce neuroprotection is not known. In the present study, we demonstrate here that PB increased heme oxygenase-1 (HO-1)(More)
OBJECTIVE Munc18-1 has an important role in neurotransmitter release, and controls every step in the exocytotic pathway in the central nervous system. In the present study, whether epileptic seizure causes a change of Munc18 localization in neuronal nuclei was analyzed. METHODS Epilepsy models were established by injection of kainic acid (KA) solution(More)
Our previous study has shown that acteoside, an antioxidative phenylethanoid glycoside, protect against beta-amyloid (Aβ)-induced cytotoxicity in vitro. However, the precise protective mechanisms remains unclear. Heme oxygenase-1 (HO-1) is a crucial factor in the response to oxidative injury, protecting neurons against Aβ-induced injury. In the present(More)
The biological function of full-length amyloid-beta protein precursor (APP), the precursor of Abeta, is not fully understood. Mounting studies reported that antibody binding to cell surface APP causes neuronal injury. However, the mechanism of cell surface APP mediating neuronal injury remains to be determined. Colocalization of APP with integrin on cell(More)
OBJECTIVES To assess the efficacy and safety of istradefylline as an adjunct to levodopa in patients with Parkinson's Disease (PD). METHODS In this study, we searched the Cochrane Library, MEDLINE, Embase, China Academic Journal Full-text Database (CNKI), China Biomedical Literature Database (CBM), Chinese Scientific Journals Database (VIP), and Wanfang(More)