Hongmei Bi

  • Citations Per Year
Learn More
Lipid nanotubes have great potential in biology and nanotechnology. Here we demonstrate a method to form lipid nanotubes using space-regulated AC electric fields above coplanar interdigitated electrodes. The AC electric field distribution can be regulated by solution height above the electrodes. The ratio of field component in x axis (Ex) to field component(More)
A droplet-solid interface lipid bilayer membrane (DSLM) with high impedance was developed through controlling the contact area between an aqueous droplet and electrode. The electrode size can be easily controlled from millimeter to micrometer level. The droplet-solid interface lipid bilayer membranes were characterized by cyclic voltammetry (CV),(More)
In this paper, we propose a finite barrier kernel function for primal-dual interior-point algorithm in linear optimization with a full-Newton step. To our best knowledge, it is the first time that the property of exponential convexity is used for full-Newton step interior-point methods(IPMs). Moreover, the analysis is simplified and the complexity of the(More)
Double vesicles are a promising model to mimic eukaryotic cells, yet effective preparation methods with high yields and stable double vesicles are scarce. Previously reported electroformation methods were mainly based on sinusoidal AC fields. Using a combination of sinusoidal and amplitude modulated (AM) electric fields lipid double vesicles could be(More)
Single-walled carbon nanotubes (SWCNTs) have been amidated by hydrothermal treatment with different aliphatic amines. The amido groups modified on the surface of the SWCNTs were characterized by Fourier transform infrared spectroscopy. The electrooxidation of nitric oxide (NO) at the modified electrodes of amidated SWCNTs was investigated. The modified(More)
  • 1