Honglong Chang

Learn More
In this paper, an integrated MEMS gyroscope array method composed of two levels of optimal filtering was designed to improve the accuracy of gyroscopes. In the firstlevel filtering, several identical gyroscopes were combined through Kalman filtering into a single effective device, whose performance could surpass that of any individual sensor. The key of the(More)
Continuous monitoring of aberrant electrical rhythms during heart injury and repair requires prolonged data acquisition. We hereby developed a wearable microelectrode membrane that could be adherent to the chest of neonatal mice for in situ wireless recording of electrocardiogram (ECG) signals. The novel dry-contact membrane with a meshed parylene-C pad(More)
—In this paper, an approach to improve the accuracy of microelectromechanical systems (MEMS) gyroscopes by combining numerous uncorrelated gyroscopes is presented. A Kalman filter (KF) is used to fuse the output signals of several uncorrelated sensors. The relationship between the KF bandwidth and the angular rate input is quantitatively analyzed. A linear(More)
This paper presents a signal processing technique to improve angular rate accuracy of the gyroscope by combining the outputs of an array of MEMS gyroscope. A mathematical model for the accuracy improvement was described and a Kalman filter (KF) was designed to obtain optimal rate estimates. Especially, the rate signal was modeled by a first-order Markov(More)
In this paper, the performance of two Kalman filter (KF) schemes based on the direct estimated model and differencing estimated model for input rate signal was thoroughly analyzed and compared for combining measurements of a sensor array to improve the accuracy of microelectromechanical system (MEMS) gyroscopes. The principles for noise reduction were(More)
In this work, we report a new design for an electrostatically actuated microgripper with a post-assembly self-locking mechanism. The microgripper arms are driven by rotary comb actuators, enabling the microgripper to grip objects of any size from 0 to 100 μm. The post-assembly mechanism is driven by elastic deformation energy and static electricity to(More)
A bulk micromachined inertial measurement unit (MIMU) is presented in this paper. Three single-axis accelerometers and three single-axis gyroscopes were simultaneously fabricated on a silicon wafer using a bulk micromachining process; the wafer is smaller than one square centimeter. In particular, a global area optimization method based on the relationship(More)