Learn More
Tuberous sclerosis (TSC) is a familial tumor syndrome due to mutations in TSC1 or TSC2, in which progression to malignancy is rare. Primary Tsc2(-/-) murine embryo fibroblast cultures display early senescence with overexpression of p21CIP1/WAF1 that is rescued by loss of TP53. Tsc2(-/-)TP53(-/-) cells, as well as tumors from Tsc2(+/-) mice, display an(More)
Tuberous sclerosis (TSC) is a autosomal dominant genetic disorder caused by mutations in either TSC1 or TSC2, and characterized by benign hamartoma growth. We developed a murine model of Tsc1 disease by gene targeting. Tsc1 null embryos die at mid-gestation from a failure of liver development. Tsc1 heterozygotes develop kidney cystadenomas and liver(More)
Although aerobic glycolysis (the Warburg effect) is a hallmark of cancer, key questions, including when, how, and why cancer cells become highly glycolytic, remain less clear. For a largely unknown regulatory mechanism, a rate-limiting glycolytic enzyme pyruvate kinase M2 (PKM2) isoform is exclusively expressed in embryonic, proliferating, and tumor cells,(More)
The mammalian target of the rapamycin (mTOR) signaling pathway functions in many cellular processes, including cell growth, proliferation, differentiation, and survival. Recent advances have demonstrated that differentiated somatic cells can be directly reprogrammed into the pluripotent state by overexpression of several pluripotency transcription factors.(More)
  • Linnan Zhu, Tao Yang, +12 authors Yong Zhao
  • 2014
Macrophages acquire distinct phenotypes during tissue stress and inflammatory responses, but the mechanisms that regulate the macrophage polarization are poorly defined. Here we show that tuberous sclerosis complex 1 (TSC1) is a critical regulator of M1 and M2 phenotypes of macrophages. Mice with myeloid-specific deletion of TSC1 exhibit enhanced M1(More)
Mutations that inactivate either TSC1 or TSC2 cause tuberous sclerosis. We have used immunoblotting and immunohistochemical analysis to see whether there is phosphorylation of p70 S6 kinase, and the ribosomal S6 protein in angiomyolipomas occurring in tuberous scierosis. Hamartin (encoded by TSC1) and S6K was expressed in all samples. Tuberin (TSC2) was(More)
The purpose of this study was to evaluate the effect of supplemental chromium (Cr) in the form of chromium picolinate (CrPic) on swine growth performance, meat quality, and protein deposition in skeletal muscle. Forty-eight piglets were divided into three groups randomly, fed with three different dietary levels of Cr (common basal feedstuff supplemented(More)
The receptor tyrosine kinase/PI3K/AKT/mammalian target of rapamycin (RTK/PI3K/AKT/mTOR) pathway is frequently altered in cancer, but the underlying mechanism leading to tumorigenesis by activated mTOR remains less clear. Here we show that mTOR is a positive regulator of Notch signaling in mouse and human cells, acting through induction of the(More)
The fibroblast growth factor (FGF) pathway promotes tumor growth and angiogenesis in many solid tumors. Although there has long been interest in FGF pathway inhibitors, development has been complicated: An effective FGF inhibitor must block the activity of multiple mitogenic FGF ligands but must spare the metabolic hormone FGFs (FGF-19, FGF-21, and FGF-23)(More)
Despite the growing understanding of pdgf signaling, studies of pdgf function have encountered two major obstacles: the functional redundancy of PDGFRalpha and PDGFRbeta in vitro and their distinct roles in vivo. Here we used wild-type mouse embryonic fibroblasts (MEF), MEF null for either PDGFRalpha, beta, or both to dissect PDGF-PDGFR signaling pathways.(More)