Learn More
Tuberous sclerosis (TSC) is a autosomal dominant genetic disorder caused by mutations in either TSC1 or TSC2, and characterized by benign hamartoma growth. We developed a murine model of Tsc1 disease by gene targeting. Tsc1 null embryos die at mid-gestation from a failure of liver development. Tsc1 heterozygotes develop kidney cystadenomas and liver(More)
The receptor tyrosine kinase/PI3K/AKT/mammalian target of rapamycin (RTK/PI3K/AKT/mTOR) pathway is frequently altered in cancer, but the underlying mechanism leading to tumorigenesis by activated mTOR remains less clear. Here we show that mTOR is a positive regulator of Notch signaling in mouse and human cells, acting through induction of the(More)
In the central nervous system, tuberous sclerosis complex (TSC) is characterized by a range of lesions including cortical tubers, white matter heterotopias, subependymal nodules, and subependymal giant cell astrocytomas (SEGAs). Recent studies have implicated an important role for the TSC genes TSC1 and TSC2, in a signaling pathway involving the mammalian(More)
Cortical tubers are developmental brain malformations in the tuberous sclerosis complex (TSC) that cause epilepsy and autism in TSC patients whose pathogenesis is uncertain. Tsc2 null murine neuroepithelial progenitor (NEP) cells display persistent growth when growth factors are withdrawn, express GFAP at high levels, and have reduced expression of a set of(More)
Mutation in either TSC1 or TSC2 causes the autosomal dominant disorder tuberous sclerosis, in which widespread hamartomas are seen, some of which have a high level of vascularization. Tuberous sclerosis complex (TSC) gene products negatively regulate mammalian target of rapamycin (mTOR) activity. We found that vascular endothelial growth factor (VEGF) is(More)
Cell growth can be suppressed by stressful environments, but the role of stress pathways in this process is largely unknown. Here we show that a cascade of p38β mitogen-activated protein kinase (MAPK) and p38-regulated/activated kinase (PRAK) plays a role in energy-starvation-induced suppression of mammalian target of rapamycin (mTOR), and that energy(More)
Mutations that inactivate either TSC1 or TSC2 cause tuberous sclerosis. We have used immunoblotting and immunohistochemical analysis to see whether there is phosphorylation of p70 S6 kinase, and the ribosomal S6 protein in angiomyolipomas occurring in tuberous scierosis. Hamartin (encoded by TSC1) and S6K was expressed in all samples. Tuberin (TSC2) was(More)
Despite the growing understanding of pdgf signaling, studies of pdgf function have encountered two major obstacles: the functional redundancy of PDGFRalpha and PDGFRbeta in vitro and their distinct roles in vivo. Here we used wild-type mouse embryonic fibroblasts (MEF), MEF null for either PDGFRalpha, beta, or both to dissect PDGF-PDGFR signaling pathways.(More)
p53 mediates DNA damage-induced cell-cycle arrest, apoptosis, or senescence, and it is controlled by Mdm2, which mainly ubiquitinates p53 in the nucleus and promotes p53 nuclear export and degradation. By searching for the kinases responsible for Mdm2 S163 phosphorylation under genotoxic stress, we identified S6K1 as a multifaceted regulator of Mdm2. DNA(More)
Mammalian target of rapamycin (mTOR) is a major downstream effector of the receptor tyrosine kinase (RTK)-phosphoinositide 3-kinase (PI3K)-v-akt murine thymoma viral oncogene homologue 1 (AKT) signaling pathway. Although this signaling network is frequently altered in cancer, the underlying mechanisms that cause tumorigenesis as a result of activated mTOR(More)