Learn More
For future applications in portable electronics, electric vehicles and grid storage, batteries with higher energy storage density than existing lithium ion batteries need to be developed. Recent efforts in this direction have focused on high-capacity electrode materials such as lithium metal, silicon and tin as anodes, and sulphur and oxygen as cathodes.(More)
High specific capacity battery electrode materials have attracted great research attention. Phosphorus as a low-cost abundant material has a high theoretical specific capacity of 2596 mAh/g with most of its capacity at the discharge potential range of 0.4-1.2 V, suitable as anodes. Although numerous research progress have shown other high capacity anodes(More)
Lithium metal has shown great promise as an anode material for high-energy storage systems, owing to its high theoretical specific capacity and low negative electrochemical potential. Unfortunately, uncontrolled dendritic and mossy lithium growth, as well as electrolyte decomposition inherent in lithium metal-based batteries, cause safety issues and low(More)
Stable cycling of lithium metal anode is challenging due to the dendritic lithium formation and high chemical reactivity of lithium with electrolyte and nearly all the materials. Here, we demonstrate a promising novel electrode design by growing two-dimensional (2D) atomic crystal layers including hexagonal boron nitride (h-BN) and graphene directly on Cu(More)
Lithium sulfur batteries have brought significant advancement to the current state-of-art battery technologies because of their high theoretical specific energy, but their wide-scale implementation has been impeded by a series of challenges, especially the dissolution of intermediate polysulfides species into the electrolyte. Conductive polymers in(More)
Fully lithiated lithium sulphide (Li2S) is currently being explored as a promising cathode material for emerging energy storage applications. Like their sulphur counterparts, Li2S cathodes require effective encapsulation to reduce the dissolution of intermediate lithium polysulphide (Li2Sn, n=4-8) species into the electrolyte. Here we report, the(More)
Searching for low-cost and efficient catalysts for the oxygen evolution reaction has been actively pursued owing to its importance in clean energy generation and storage. While developing new catalysts is important, tuning the electronic structure of existing catalysts over a wide electrochemical potential range can also offer a new direction. Here we(More)
Lithium-sulphur batteries are attractive owing to their high theoretical energy density and reasonable kinetics. Despite the success of trapping soluble polysulphides in a matrix with high surface area, spatial control of solid-state sulphur and lithium sulphide species deposition as a critical aspect has not been demonstrated. Herein, we show a clear(More)
Sulfur is a cathode material for lithium-ion batteries with a high specific capacity of 1675 mAh/g. The rapid capacity fading, however, presents a significant challenge for the practical application of sulfur cathodes. Two major approaches that have been developed to improve the sulfur cathode performance include (a) fabricating nanostructured conductive(More)
Rational nanostructure design has been a promising route to address critical materials issues for enabling next-generation high capacity lithium ion batteries for portable electronics, vehicle electrification, and grid-scale storage. However, synthesis of functional nanostructures often involves expensive starting materials and elaborate processing, both of(More)