Learn More
Functional recovery of neurons in the spinal cord after physical injury is essentially abortive in clinical cases. As neurotrophins had been reported to be responsible, at least partially, for the lesion-induced recovery of spinal cord, it is not surprising that they have become the focus of numerous studies. Studies on endogenous neurotrophins, especially(More)
An animal model of transected spinal cord injury (SCI) was used to test the hypothesis that cografted human umbilical mesenchymal stem cells-derived neurospheres (HUMSC-NSs) and BDNF can promote morphologic and functional recoveries of injured spinal cord. In vitro, HUMSC-NSs terminally differentiated into higher percentages of cells expressing neuronal(More)
Although human amnion derived mesenchymal stem cells (AMSC) are a promising source of stem cells, their therapeutic potential for traumatic brain injury (TBI) has not been widely investigated. In this study, we evaluated the therapeutic potential of AMSC using a rat TBI model. AMSC were isolated from human amniotic membrane and characterized by flow(More)
The aim of this study was to compare the neural differentiation potential and the expression of neurotrophic factors (NTFs) in differentiated adipose-derived stem cells (ADSCs) using three established induction protocols, serum free (Protocol 1), chemical reagents (Protocol 2), and spontaneous (Protocol 3) protocols. Protocol 1 produced the highest(More)
This study is designed to evaluate the therapeutic effects of three types of neurospheres (NSs) derived from brain, bone marrow and adipose tissue in a rat model of spinal contusive injury. As shown by BBB locomotor rating scale and grid test, the optimal therapeutic responses generated by subventricular zone-derived NSs (SVZ-NSs), and followed by(More)
Transdifferentiated and untransdifferentiated mesenchymal stem cells (MSCs) have shown therapeutic benefits in central nervous system (CNS) injury. However, it is unclear which would be more appropriate for transplantation. To address this question, we transplanted untransdifferentiated human umbilical mesenchymal stem cells (HUMSCs) and transdifferentiated(More)
Immunohistochemical distribution and cellular localization of neurotrophins was investigated in adult monkey brains using antisera against nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). Western blot analysis showed that each antibody specifically recognized appropriate bands of(More)
In this study, we examined the phenotypic and bioassay characteristics of human umbilical cord blood-derived mesenchymal stromal cells (UCB-MSCs) differentiated along a Schwann cells lineage. Initially, we induced human UCB-MSCs into floating neurospheres, and then, neurospheres were induced to differentiate into Schwann-like cells using glia growth(More)
γ-Aminobutyric acid (GABA) is the principle inhibitory neurotransmitter in adult mammalian brain. GABA receptors B subtype (GABA(B)Rs) are abundantly expressed at presynaptic and postsynaptic neuronal structures in the rat ventrolateral periaqueductal gray (PAG), an area related to pain regulation. Activation of GABA(B)Rs by baclofen, a selective agonist,(More)
Controversies exist concerning the need for mesenchymal stromal cells (MSCs) to be transdifferentiated prior to their transplantation. In the present study, we compared the results of grafting into the rat contused spinal cord undifferentiated, adipose tissue-derived stromal cells (uADSCs) versus ADSCs induced by two different protocols to form(More)