Learn More
All ligands of the epidermal growth factor receptor (EGFR), which has important roles in development and disease, are released from the membrane by proteases. In several instances, ectodomain release is critical for activation of EGFR ligands, highlighting the importance of identifying EGFR ligand sheddases. Here, we uncovered the sheddases for six EGFR(More)
Periostin was originally identified as an osteoblast-specific factor and is highly expressed in the embryonic periosteum, cardiac valves, placenta, and periodontal ligament as well as in many adult cancerous tissues. To investigate its role during development, we generated mice that lack the periostin gene and replaced the translation start site and first(More)
The Sludge granulation in an anaerobic reactor consists of two steps: nucleation and maturation of nuclei. Nucleation as the starting point is of particular importance. In this paper, the nucleation of flocculent sludge as seed under weak, strong and violent hydrodynamic shear conditions is studied with an original quantitative method, and then the(More)
UNLABELLED Differentiation of fibroblasts to myofibroblasts and collagen fibrillogenesis are two processes essential for normal cutaneous development and repair, but their misregulation also underlies skin-associated fibrosis. Periostin is a matricellular protein normally expressed in adult skin, but its role in skin organogenesis, incisional wound healing(More)
Congenital heart disease is the most common form of human birth defects, yet much remains to be learned about its underlying causes. Here we report that mice lacking functional ADAM19 (mnemonic for a disintegrin and metalloprotease 19) exhibit severe defects in cardiac morphogenesis, including a ventricular septal defect (VSD), abnormal formation of the(More)
Defects in heart development are the most common congenital abnormalities in humans, providing a strong incentive to learn more about the underlying causes. Previous studies have implicated the metalloprotease-disintegrins ADAMs (a disintegrin and metalloprotease) 17 and 19 as well as heparin binding EGF-like growth factor (HB-EGF) and neuregulins in heart(More)
Pax3 is an essential paired- and homeodomain-containing transcription factor that is necessary for closure of the neural tube, and morphogenesis of the migratory neural crest and myoblast lineages. Homozygous loss-of-function mutation results in mid-gestational lethality with defects in myogenesis, neural tube closure and neural crest-derived lineages(More)
Systemic loss-of-function studies have demonstrated that Pax3 transcription factor expression is essential for dorsal neural tube, early neural crest and muscle cell lineage morphogenesis. Cardiac neural crest cells participate in both remodeling of the pharyngeal arch arteries and outflow tract septation during heart development, but the lineage specific(More)
The Phosphatase of Regenerating Liver (PRL) proteins promote cell signaling and are oncogenic when overexpressed. However, our understanding of PRL function came primarily from studies with cultured cell lines aberrantly or ectopically expressing PRLs. To define the physiological roles of the PRLs, we generated PRL2 knock-out mice to study the effects of(More)
Increased expression of urokinase-type plasminogen activator (uPA) and its receptor (uPAR) is associated with different pathological conditions. Both uPAR-mediated signaling and plasmin-catalyzed extracellular proteolysis may contribute to pathogenesis. To evaluate the involvement of plasminogen in such circumstances, we have taken advantage of transgenic(More)