Learn More
Active adult neurogenesis occurs in discrete brain regions of all mammals and is widely regarded as a neuronal replacement mechanism. Whether adult-born neurons make unique contributions to brain functions is largely unknown. Here we systematically characterized synaptic plasticity of retrovirally labeled adult-born dentate granule cells at different stages(More)
Adult neurogenesis, the birth and integration of new neurons from adult neural stem cells, is a striking form of structural plasticity and highlights the regenerative capacity of the adult mammalian brain. Accumulating evidence suggests that neuronal activity regulates adult neurogenesis and that new neurons contribute to specific brain functions. The(More)
Adult neurogenesis, a process of generating functional neurons from adult neural precursors, occurs throughout life in restricted brain regions in mammals. The past decade has witnessed tremendous progress in addressing questions related to almost every aspect of adult neurogenesis in the mammalian brain. Here we review major advances in our understanding(More)
Cytosine methylation is the major covalent modification of mammalian genomic DNA and plays important roles in transcriptional regulation. The molecular mechanism underlying the enzymatic removal of this epigenetic mark, however, remains elusive. Here, we show that 5-methylcytosine (5mC) hydroxylase TET1, by converting 5mCs to 5-hydroxymethylcytosines(More)
During an investigation of the mechanisms through which the local environment controls the fate specification of adult neural stem cells, we discovered that adult astrocytes from hippocampus are capable of regulating neurogenesis by instructing the stem cells to adopt a neuronal fate. This role in fate specification was unexpected because, during(More)
GABA, a major inhibitory neurotransmitter in the adult brain, activates synaptic and extrasynaptic GABA(A) receptors, causing hyperpolarization of mature neurons. As in the embryonic nervous system, GABA depolarizes neural progenitors and immature neurons in the adult brain. Several recent studies have suggested that GABA has crucial roles in regulating(More)
Cortical GABAergic inhibitory interneurons have crucial roles in the development and function of the cerebral cortex. In rodents, nearly all neocortical interneurons are generated from the subcortical ganglionic eminences. In humans and nonhuman primates, however, the developmental origin of neocortical GABAergic interneurons remains unclear. Here we show(More)
Neural stem cells are present both in the developing nervous system and in the adult nervous system of all mammals, including humans. Little is known, however, about the extent to which stem cells in adults can give rise to new neurons. We used immunocytochemistry, electron microscopy, fluorescence microscopy (FM imaging) and electrophysiology to(More)
In Drosophila, plexin A is a functional receptor for semaphorin-1a. Here we show that the human plexin gene family comprises at least nine members in four subfamilies. Plexin-B1 is a receptor for the transmembrane semaphorin Sema4D (CD100), and plexin-C1 is a receptor for the GPI-anchored semaphorin Sema7A (Sema-K1). Secreted (class 3) semaphorins do not(More)