Learn More
Somatic hypermutation (SHM) of immunoglobulin (Ig) genes appears to involve the generation of double-strand DNA breaks (DSBs) and their error-prone repair. Here we show that DSBs occur at a high frequency in unrearranged (germline) Ig variable (V) genes, BCL6 and c-MYC. These DSBs are blunt, target the mutational RGYW/RGY hotspot, and would be resolved(More)
B lymphocytes are induced to undergo Ig class switching and a complex phenotypic differentiation by the milieu of the germinal center. Partly as a result of the lack of a suitable in vitro B cell model, the relationship between these processes in the humans has never been formally established in vitro. We have identified a human monoclonal B cell line,(More)
The cytidine deaminase AID (encoded by Aicda in mice and AICDA in humans) is critical for immunoglobulin class-switch recombination (CSR) and somatic hypermutation (SHM). Here we show that AID expression was induced by the HoxC4 homeodomain transcription factor, which bound to a highly conserved HoxC4-Oct site in the Aicda or AICDA promoter. This site(More)
Class-switch DNA recombination (CSR) of the immunoglobulin heavy chain (IGH) locus is central to the maturation of the antibody response and crucially requires the cytidine deaminase AID. CSR involves changes in the chromatin state and the transcriptional activation of the IGH locus at the upstream and downstream switch (S) regions that are to undergo S-S(More)
Differentiation of naïve B cells, including immunoglobulin class-switch DNA recombination, is critical for the immune response and depends on the extensive integration of signals from the B-cell receptor (BCR), tumor necrosis factor (TNF) family members, Toll-like receptors (TLRs), and cytokine receptors. TLRs and BCR synergize to induce class-switch DNA(More)
Immunoglobulin (Ig) class switch DNA recombination (CSR) is the crucial mechanism diversifying the biological effector functions of antibodies. Generation of double-strand DNA breaks (DSBs), particularly staggered DSBs, in switch (S) regions of the upstream and downstream CH genes involved in the specific recombination process is an absolute requirement for(More)
Estrogen enhances antibody and autoantibody responses through yet to be defined mechanisms. It has been suggested that estrogen up-regulates the expression of activation-induced cytosine deaminase (AID), which is critical for antibody class switch DNA recombination (CSR) and somatic hypermutation (SHM), through direct activation of this gene. AID, as we(More)
By diversifying antibody biological effector functions, class switch DNA recombination has a central role in the maturation of the antibody response. Here we show that BCR-signalling synergizes with Toll-like receptor (TLR) signalling to induce class switch DNA recombination. BCR-signalling activates the non-canonical NF-κB pathway and enhances the(More)
Class switch DNA recombination (CSR) is the mechanism that diversifies the biological effector functions of antibodies. Activation-induced cytidine deaminase (AID), a key protein in CSR, targets immunoglobulin H (IgH) switch regions, which contain 5'-AGCT-3' repeats in their core. How AID is recruited to switch regions remains unclear. Here we show that(More)
Chronic lymphocytic leukemia (CLL) results from the expansion of malignant CD5(+) B cells that usually express IgD and IgM. These leukemic cells can give rise in vivo to clonally related IgG(+) or IgA(+) elements. The requirements and modalities of this process remain elusive. Here we show that leukemic B cells from 14 of 20 CLLs contain the hallmarks of(More)