Learn More
The force exerted by photons is of fundamental importance in light-matter interactions. For example, in free space, optical tweezers have been widely used to manipulate atoms and microscale dielectric particles. This optical force is expected to be greatly enhanced in integrated photonic circuits in which light is highly concentrated at the nanoscale.(More)
Nanoelectromechanical systems based on cantilevers have consistently set records for sensitivity in measurements of displacement, force and mass over the past decade. Continued progress will require the integration of efficient transduction on a chip so that nanoelectromechanical systems may be operated at higher speeds and sensitivities. Conventional(More)
The potential impact of carbon nanotubes (CNTs) on human health and the environment is receiving more and more attention. The high surface area of CNTs tends to adsorb a large variety of toxic chemicals, which may enhance the toxicity of CNTs and/or toxic chemicals. In this study, adsorption and desorption of atrazine on carbon nanotubes from aqueous(More)
We realize a cavity magnon-microwave photon system in which a magnetic dipole interaction mediates strong coupling between the collective motion of a large number of spins in a ferrimagnet and the microwave field in a three-dimensional cavity. By scaling down the cavity size and increasing the number of spins, an ultrastrong coupling regime is achieved with(More)
The integration of complex oxides on silicon presents opportunities to extend and enhance silicon technology with novel electronic, magnetic, and photonic properties. Among these materials, barium titanate (BaTiO3) is a particularly strong ferroelectric perovskite oxide with attractive dielectric and electro-optic properties. Here we demonstrate(More)
Scanning probe microscopies (SPM) and cantilever-based sensors generally use low-frequency mechanical devices of microscale dimensions or larger. Almost universally, off-chip methods are used to sense displacement in these devices, but this approach is not suitable for nanoscale devices. Nanoscale mechanical sensors offer a greatly enhanced performance that(More)
A series of experiments were carried out to determine the effect of surfactants at low concentrations on the sorption of atrazine by natural sediments. With surfactant concentrations ranging from 0 to 20 mg/ L, anionic and cationic surfactants appreciably reduce the adsorption of atrazine, while nonionic surfactant decreases the adsorption of atrazine at(More)
We demonstrate spectrally tuned dispersive and reactive optical force in a cavity optomechanics system that comprises a microdisk and a vibrating nanomechanical beam waveguide. The waveguide coupled to the microdisk acts as a bosonic dissipation channel and its motion modulates the cavity's damping rate. As a result a reactive optical force arises in(More)
Aluminum nitride (AlN) is an appealing nonlinear optical material for on-chip wavelength conversion. Here we report optical frequency comb generation from high-quality-factor AlN microring resonators integrated on silicon substrates. By engineering the waveguide structure to achieve near-zero dispersion at telecommunication wavelengths and optimizing the(More)