Learn More
In this study, the digitized geometrical data of the embalmed skull and vertebrae (C0-C7) of a 68-year old male cadaver were processed to develop a comprehensive, geometrically accurate, nonlinear C0-C7 FE model. The biomechanical response of human neck under physiological static loadings, near vertex drop impact and rear-end impact (whiplash) conditions(More)
The antibody response to a single influenza vaccination and the effect of influenza revaccination was assessed in healthy elderly persons. Travelers > or =65 years old who had received influenza vaccine before travel were enrolled in the study and were offered a second vaccination after 12 weeks. Geographic and age-matched control subjects received a single(More)
METHODS The study was designed to analyze the load distribution of the cancellous core after implantation of vertical ring cages made of titanium, cortical bone, and tantalum using the finite element (FE) method. The intact FE model of C5-C6 motion segment was validated with experimental results. RESULTS The percentage of load distribution in cancellous(More)
The definition of cervical spinal instability has been a subject of considerable debate and has not been clearly established. Stability of the motion segment is provided by ligaments, facet joints, and disc, which restrict range of movement. Moreover, permanent damage to one of the stabilizing structures alters the roles of the other two. Although many(More)
A comprehensive, geometrically accurate, nonlinear C0-C7 FE model of head and cervical spine based on the actual geometry of a human cadaver specimen was developed. The motions of each cervical vertebral level under pure moment loading of 1.0 Nm applied incrementally on the skull to simulate the movements of the head and cervical spine under flexion,(More)
Cervical spinal instability due to ligamentous injury, degenerated disc and facetectomy is a subject of great controversy. There is no analytical investigation reported on the biomechanical response of cervical spine in these respects. Parametric study on the roles of ligaments, facets, and disc nucleus of human lower cervical spine (C4-C6) was conducted(More)
Contact mechanics of ultra high molecular weight polyethylene (UHMWPE) cups against metallic femoral heads for artificial hip joints is considered in this study. Both the experimental measurement of the contact area and the finite element prediction of the contact radius, maximum contact pressure and maximum Von Mises stress have been carried out for a wide(More)
A parametric study was conducted to evaluate axial stiffness of the interbody fusion, compressive stress, and bulging in the endplate due to changes in the spacer position with/without fusion bone using an anatomically accurate and validated L2-L3 finite-element model exercised under physiological axial compression. The results show that the spacer plays an(More)
This study was conducted to develop a detailed, nonlinear three-dimensional geometrically and mechanically accurate finite-element model of the human lower cervical spine using a high-definition digitizer. This direct digitizing process also offers an additional method in the development of the finite-element model for the human cervical spine. The(More)
Laminectomy and facetectomy are surgical techniques used for decompression of the cervical spinal stenosis. Recent in vitro and finite element studies have shown significant cervical spinal instability after performing these surgical techniques. However, the influence of degenerated cervical disk on the biomechanical responses of the cervical spine after(More)