Learn More
Methodologies for planning motion trajectory of parametric interpolation such as non-uniform rational B-spline (NURBS) curves have been proposed in the past. However, most of the algorithms were developed based on the constraints of feedrate, acceleration/deceleration (acc/dec), jerk, and chord errors. The errors caused by servo dynamics were rarely(More)
This paper presents a Delaunay-based region-growing (DBRG) surface reconstruction algorithm that holds the advantages of both Delaunay-based and region-growing approaches. The proposed DBRG algorithm takes a set of unorganized sample points from the boundary surface of a three-dimensional object and produces an orientable manifold triangulated model with a(More)
In the framework of Virtual CMM [1], virtual parts are proposed to be constructed as triangulated surface models. This paper presents a novel surface reconstruction method to the creation of virtual parts. It is based on the idea of identification and sculpting of concave regions of a Delaunay triangulation of the sample data. The proposed algorithm is(More)
This paper presents a new combinatorial approach to surface reconstruction with sharp features. Different from other postprocessing methods, the proposed method provides a systematic way to identify and reconstruct sharp features from unorganized sample points in one integrated reconstruction process. In addition, unlike other approximation methods, the(More)
Robustness issue is considered to be one of the major concerns in application of the iterative learning control in motion control systems. The robustness in servo systems is related to parameter uncertainties and noise accumulation. In this paper, both parameter uncertainties and noise are considered in derivation of the error dynamic equation of the ILC(More)