Learn More
Development of nervous tissue is a coordinated process of neural progenitor cell (NPC) proliferation and neuronal differentiation. Intracellular signalling events that regulate the balance between NPC proliferation and neuronal differentiation, therefore, determine the size and composition of nervous tissues. Here, we demonstrate that negative regulation of(More)
The capacity for core-shell nanofiber mats containing healing agents (resin monomer and cure) in their cores to adhere to a substrate was studied using blister testing. After extended periodic bending, the adhesion energy was measured, and the effect of self-healing on the composite's delamination from the substrate was considered. In addition, the cohesion(More)
The present work aims at development of self-healing materials capable of partially restoring their mechanical properties under the conditions of prolonged periodic loading and unloading, which is characteristic, for example, of aerospace applications. Composite materials used in these and many other applications frequently reveal multiple defects stemming(More)
Coaxial electrospinning was used to fabricate two types of core-shell fibers: the first type with liquid resin monomer in the core and polyacrylonitrile in the shell, and the second type with liquid curing agent in the core and polyacrylonitrile in the shell. These two types of core-shell fibers were mutually entangled and embedded into two flexible(More)
We fabricated a PAN (polyacrylonitrile) NF (nanofiber)-embedded composite layer to adjust the light-control layer in light-emitting-diode (LED) and organic-light-emitting-diode (OLED) lighting systems with unique optical characteristics, for effective light scattering. The newly designed light-control composite layers with a composition of PAN NF/SU-8(More)
Self-junctioned copper nanofiber transparent flexible films are produced using electrospinning and electroplating processes that provide high performances of T = 97% and Rs = 0.42 Ω sq(-1) by eliminating junction resistance at wire intersections. The film remains conductive after being stretched by up to 770% (films with T = 76%) and after 1000 cycles of(More)
Bioluminescent jellyfish has a unique structure derived from fiber/polymer interfaces that is advantageous for effective light scattering in the dark, deep sea water. Herein, we demonstrate the fabrication of bio-inspired hybrid films by mimicry of the jellyfish's structure, leading to excellent light-scattering performance and defrosting capability. A haze(More)
Mechanically robust freestanding platinum (Pt) nanofiber (NF) meshes are of great interest in applications where the corrosion resistance, malleability, and stability of a pure platinum structure must be combined with high surface area for catalysis. For photoelectrochemical applications, transparent electrodes are desirable. Several 1-dimensional (1D)(More)
The effect of the supersonically blown below-74 nm nanofibers on cooling of high-temperature surfaces is studied experimentally and theoretically. The ultrathin supersonically blown nanofibers were deposited and then copper-plated, while their surfaces resembled those of the thorny-devil nanofibers. Here, we study for the first time the enhancement of(More)