Learn More
We present the design, implementation, evaluation, and user ex periences of theCenceMe application, which represents the first system that combines the inference of the presence of individuals using off-the-shelf, sensor-enabled mobile phones with sharing of this information through social networking applications such as Facebook and MySpace. We discuss the(More)
Top end mobile phones include a number of specialized (e.g., accelerometer, compass, GPS) and general purpose sensors (e.g., microphone, camera) that enable new people-centric sensing applications. Perhaps the most ubiquitous and unexploited sensor on mobile phones is the microphone - a powerful sensor that is capable of making sophisticated inferences(More)
Supporting continuous sensing applications on mobile phones is challenging because of the resource demands of long-term sensing, inference and communication algorithms. We present the design, implementation and evaluation of the <i>Jigsaw continuous sensing engine</i>, which balances the performance needs of the application and the resource demands of(More)
Stress can have long term adverse effects on individuals' physical and mental well-being. Changes in the speech production process is one of many physiological changes that happen during stress. Microphones, embedded in mobile phones and carried ubiquitously by people, provide the opportunity to continuously and non-invasively monitor stress in real-life(More)
In many real-world applications, Euclidean distance in the original space is not good due to the curse of dimensionality. In this paper, we propose a new method, called Discriminant Neighborhood Embedding (DNE), to learn an appropriate metric space for classification given finite training samples. We define a discriminant adjacent matrix in favor of(More)
Automatically identifying the person you are talking with using continuous audio sensing has the potential to enable many pervasive computing applications from memory assistance to annotating life logging data. However, a number of challenges, including energy efficiency and training data acquisition, must be addressed before unobtrusive audio sensing is(More)
Sensor-enabled smartphones are opening a new frontier in the development of mobile sensing applications. The recognition of human activities and context from sensor-data using classification models underpins these emerging applications. However, conventional approaches to training classifiers struggle to cope with the diverse user populations routinely(More)
Neural signals are everywhere just like mobile phones. We propose to use neural signals to control mobile phones for hands-free, silent and effortless human-mobile interaction. Until recently, devices for detecting neural signals have been costly, bulky and fragile. We present the design, implementation and evaluation of the <i>NeuroPhone</i> system, which(More)