Hong-Chang Yang

Learn More
A highly sensitive immunoassay, the immunomagnetic reduction, is used to measure several biomarkers for plasma that is related to Alzheimer's disease (AD). These biomarkers include Aβ-40, Aβ-42, and tau proteins. The samples are composed of four groups: healthy controls (n=66), mild cognitive impairment (MCI, n=22), very mild dementia (n=23), and(More)
Some previous reports have already shown the characterizations of immunomagnetic reduction (IMR). The assay technology involves the utilities of biofunctionalized magnetic nanoparticles to label target biomolecules. However, the detection threshold and interference tests for IMR have not been investigated in detail. In this study, alpha-fetoprotein (AFP)(More)
BACKGROUND Magnetic nanoparticles biofunctionalized with antibodies are able to recognize and bind to the corresponding antigens. In this work, anti-C-reactive protein (CRP) antibody was covalently conjugated onto the surface of magnetic nanoparticles to label CRP specifically in serum. METHODS The level of serum CRP was detected by immunomagnetic(More)
To perform a rat experiment using a high-temperature superconducting (HTS) surface resonator, a cryostat is essential to maintain the rat's temperature. In this work, a compact temperature-stable HTS cryo-system, keeping animal rectal temperature at 37.4°C for more than 3 hours, was successfully developed. With this HTS cryo-system, a 40-mm-diameter(More)
Magnetic nanoparticles biofunctionalized with antibodies against β-amyloid-40 (Aβ-40) and Aβ-42, which are promising biomarkers related to Alzheimer's disease (AD), were synthesized. We characterized the size distribution, saturated magnetizations, and stability of the magnetic nanoparticles conjugated with anti-Aβ antibody. In combination with(More)
For preoperative and intraoperative detection of tumor distribution, numerous multimodal contrast agents, such as magnetic nanoparticles (MNPs) with several examination indicators, are currently in development. However, complex materials, configuration, and cost are required for multimodal contrast agents, accompanied by a high possibility of toxicity and(More)
With antibody-mediated magnetic nanoparticles (MNPs) applied in cancer examinations, patients must pay at least twice for MNP reagents in immunomagnetic reduction (IMR) of in vitro screening and magnetic resonance imaging (MRI) of in vivo tests. This is because the high maintenance costs and complex analysis of MRI have limited the possibility of in vivo(More)
Although the biomarker carcinoembryonic antigen (CEA) is expressed in colorectal tumors, the utility of an anti-CEA-functionalized image medium is powerful for in vivo positioning of colorectal tumors. With a risk of superparamagnetic iron oxide nanoparticles (SPIONPs) that is lower for animals than other material carriers, anti-CEA-functionalized SPIONPs(More)
Magnetic nanoparticles (MNPs) of Fe(3)O(4) have been widely applied in many medical fields, but few studies have clearly shown the outcome of particles following intravenous injection. We performed a magnetic examination using scanning SQUID biosusceptometry (SSB). Based on the results of SSB analysis and those of established in vitro nonmagnetic bioassays,(More)
High temperature superconducting (HTS) surface resonators have been used as a low loss RF receiver resonator for improving magnetic resonance imaging image quality. However, the application of HTS surface resonators is significantly limited by their filling factor. To maximize the filling factor, it is desirable to have the RF resonator wrapped around the(More)