Learn More
Dynamins are 100-kDa GTPases that are essential for clathrin-coated vesicle formation during receptor-mediated endocytosis. To date, three different dynamin genes have been identified, with each gene expressing at least four different alternatively spliced forms. Currently, it is unclear whether these different dynamin gene products perform distinct or(More)
The dynamin family of large GTPases has been implicated in the formation of nascent vesicles in both the endocytic and secretory pathways. It is believed that dynamin interacts with a variety of cellular proteins to constrict membranes. The actin cytoskeleton has also been implicated in altering membrane shape and form during cell migration, endocytosis,(More)
The large GTPase dynamin is a mechanoenzyme that mediates the liberation of nascent clathrin-coated pits from the plasma membrane during endocytosis. Recently, this enzyme has been demonstrated to comprise an extensive family of related proteins that have been implicated in a large variety of vesicle trafficking events during endocytosis, secretion and even(More)
Dynamin guanosine triphosphatases support the scission of clathrin-coated vesicles from the plasmalemma during endocytosis. By fluorescence microscopy of cultured rat hepatocytes, a green fluorescent protein-dynamin II fusion protein localized with clathrin-coated vesicles at the Golgi complex. A cell-free assay was utilized to demonstrate the role of(More)
Cortactin is an actin-binding protein that has recently been implicated in endocytosis. It binds directly to dynamin-2 (Dyn2), a large GTPase that mediates the formation of vesicles from the plasma membrane and the Golgi. Here we show that cortactin associates with the Golgi to regulate the actin- and Dyn2-dependent transport of cargo. Cortactin antibodies(More)
BACKGROUND We previously developed GoMiner, an application that organizes lists of 'interesting' genes (for example, under-and overexpressed genes from a microarray experiment) for biological interpretation in the context of the Gene Ontology. The original version of GoMiner was oriented toward visualization and interpretation of the results from a single(More)
The large GTPase dynamin (Dyn2) has been demonstrated by us and others to interact with several different actin-binding proteins. To define how Dyn2 might participate in actin dynamics in livings cells we have expressed green fluorescent protein (GFP)-tagged Dyn2 in cultured cells and observed labeling of comet-like vesicles and macropinosomes. The comet(More)
Dynamin 2 (Dyn2) is a large GTPase involved in vesicle formation and actin reorganization. In this study, we report a novel role for Dyn2 as a component of the centrosome that is involved in centrosome cohesion. By light microscopy, Dyn2 localized aside centrin and colocalized with gamma-tubulin at the centrosome; by immunoelectron microscopy, however, Dyn2(More)
Histone (de)acetylation is a highly conserved chromatin modification that is vital for development and growth. In this study, we identified a role in seed dormancy for two members of the histone deacetylation complex in Arabidopsis thaliana, SIN3-LIKE1 (SNL1) and SNL2. The double mutant snl1 snl2 shows reduced dormancy and hypersensitivity to the histone(More)
The dynamins comprise a large family of mechanoenzymes known to participate in membrane modeling events. All three conventional dynamin genes (Dyn1, Dyn2, Dyn3) are expressed in mammalian brain and produce more than 27 different dynamin proteins as a result of alternative splicing. Past studies have suggested that Dyn1 participates in specialized neuronal(More)