Learn More
FK506 binding proteins 12 and 12.6 (FKBP12 and FKBP12.6) are intracellular receptors for the immunosuppressant drug FK506 (ref. 1). The skeletal muscle ryanodine receptor (RyR1) is isolated as a hetero-oligomer with FKBP12 (ref. 2), whereas the cardiac ryanodine receptor (RyR2) more selectively associates with FKBP12.6 (refs 3, 4, 5). FKBP12 modulates Ca2+(More)
Isolated skeletal muscle ryanodine receptors (RyRs) complexed with the modulatory ligands, calmodulin (CaM) or 12-kDa FK506-binding protein (FKBP12), have been characterized by electron cryomicroscopy and three-dimensional reconstruction. RyRs are composed of 4 large subunits (molecular mass 565 kDa) that assemble to form a 4-fold symmetric complex that,(More)
Genetically encoded signaling proteins provide remarkable opportunities to design and target the expression of molecules that can be used to report critical cellular events in vivo, thereby markedly extending the scope and physiological relevance of studies of cell function. Here we report the development of a transgenic mouse expressing such a reporter and(More)
Calcium release through ryanodine receptors (RYR) activates calcium-dependent membrane conductances and plays an important role in excitation-contraction coupling in smooth muscle. The specific RYR isoforms associated with this release in smooth muscle, and the role of RYR-associated proteins such as FK506 binding proteins (FKBPs), has not been clearly(More)
Calstabin2 is a component of the cardiac ryanodine receptor (RyR2) macromolecular complex, which modulates Ca(2+) release from the sarcoplasmic reticulum in cardiomyocytes. Previous reports implied that genetic deletion of Calstabin2 leads to phenotypes related to cardiac aging. However, the mechanistic role of Calstabin2 in the process of cardiac aging(More)
BACKGROUND Precise coordination of the hypothalamic-pituitary-gonadal axis orchestrates the normal reproductive function. As a central regulator, the appropriate synthesis and secretion of gonadotropin-releasing hormone I (GnRH-I) from the hypothalamus is essential for the coordination. Recently, emerging evidence indicates that histone deacetylases (HDACs)(More)
AIMS Beta-adrenergic augmentation of Ca(2+) sparks and cardiac contractility has been functionally linked to phosphorylation-dependent dissociation of FK506 binding protein 12.6 (FKBP12.6) regulatory proteins from ryanodine receptors subtype 2 (RYR2). We used FKBP12.6 null mice to test the extent to which the dissociation of FKBP12.6 affects Ca(2+) sparks(More)
Conditional inactivation of individual genes in mice using site-specific recombinases is an extremely powerful method for determining the complex roles of mammalian genes in developmental and tissue-specific contexts, a major goal of post-genomic research. However, the process of generating mice with recombinase recognition sequences placed at specific(More)
The molecular mechanism to regulate energy balance is not completely understood. Here we observed that Egr-1 expression in white adipose tissue (WAT) was highly correlated with dietary-induced obesity and insulin resistance both in mice and humans. Egr-1 null mice were protected from diet-induced obesity and obesity-associated pathologies such as fatty(More)
A 12-kDa immunophilin (FKBP12) is an integral component of the skeletal muscle ryanodine receptor (RyR). The RyR is a hetero-oligomeric complex with structural formula (FKBP)4(Ryr1)4, where Ryr1 is the 565-kDa product of the Ryr1 gene. To aid in the detection of the immunophilin's location in the receptor, we exchanged the FKBP12 present in RyR-enriched(More)